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Abstract. We introduce the notion of a locally scaling transformation defined on a compact-
open subset of a non-archimedean local field. We show that this class encompasses the Haar
measure-preserving transformations defined by C1 (in particular, polynomial) maps, and
prove a structure theorem for locally scaling transformations. We use the theory of poly-
nomial approximation on compact-open subsets of non-archimedean local fields to demon-
strate the existence of ergodic Markov, and mixing Markov transformations defined by such
polynomial maps. We also give simple sufficient conditions on the Mahler expansion of a
continuous map Zp → Zp for it to define a Bernoulli transformation.

1. Introduction

The p-adic numbers have arisen in a natural way in the study of some dynamical sys-
tems, for example in the study of group automorphisms of solenoids in Lind and Schmidt
[LS94]; other situations in dynamics where the p-adic numbers come up are surveyed in
Ward [War06]. At the same time there has been interest in studying the dynamics (topo-
logical, complex, or measurable) of naturally arising maps (such as polynomials) defined on
the p-adics; see for example Benedetto [Ben01], Khrennikov and Nilson [KN04], and Rivera-
Letelier [RL03]. In particular, Bryk and Silva in [BS05] studied the measurable dynamics of
simple polynomials on balls and spheres on the field Qp of p-adic numbers. The maps they
studied are ergodic but not totally ergodic and they asked whether there exist polynomials
on Qp that define (Haar) measure-preserving transformations that are mixing. Woodcock
and Smart in [WS98] show that the polynomial map x 7→ xp−x

p
defines a Bernoulli, hence

mixing, transformation on Zp. A consequence of our work is a significant extension of the
result for this map, placing it in a greater context (see in particular Example 8.6).

Rather than working on Qp we find that the natural setting for our work is over a non-
archimedean local field K. We introduce a class of transformations, called locally scaling,
and show in Lemma 4.4 that measure-preserving C1 (in particular, polynomial) maps are
locally scaling. In Section 5 we apply the theory of Markov shifts to classify the dynamics
of locally scaling transformations, decomposing the transformation into a disjoint union of
ergodic Markov transformations and local isometries. We show that if a C1 transformation
T is measure-preserving when restricted to a compact-open set X, then X can be written
as a finite disjoint union of invariant compact-opens sets such that T restricted to each such
set is either a local isometry or is topologically and measurably conjugate to an ergodic
Markov transformation. In particular, we show that for a measure-preserving locally scaling
transformation on a compact-open set, if it is weakly mixing, then it must be mixing, and that
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there are no invertible weakly mixing measure-preserving C1 transformations on compact-
open sets, answering a question in [BS05]. We also show the existence of polynomials defining
transformations exhibiting nearly the full range of behaviors possible for locally scaling
transformations, such as ergodic Markov, mixing Markov, and Bernoulli transformations.

Given a polynomial defined on a compact-open subset of K, our work shows that a finite
computation may check whether it defines a measure-preserving transformation and whether
it defines a mixing transformation; the question of ergodicity is also answered, except in the
case where the polynomial is 1-Lipschitz, which has been studied by Anashin in [Ana02].
Works that study the dynamics of isometric analytic maps include [AV94], [HY83], [Lin04].

We briefly mention related works studying measurable dynamics of certain maps on spaces
related to the p-adics. These works [RB], [FRL04], and [FRL06] construct a natural invari-
ant measure for a wide-class of rational functions, as in existing constructions in complex
dynamics. The natural domain for these constructions is the so-called Berkovich projective
space, a space much larger than the ordinary p-adics.

We now indicate an outline of the rest of the paper. Section 2 reviews results on Markov
shifts, Section 3 reviews preliminaries on non-archimedean local fields as well as some analytic
definitions, and Section 6 recalls some of the theory of polynomial approximation on rings
of integers of non-archimedean local fields.

Section 4 establishes the fact that measure-preserving C1 maps are locally scaling, and
Section 5 proves our main structural results, in particular Proposition 5.6 and Theorem 5.7.
Section 7, in particular Theorem 7.2, shows that polynomial maps are in a sense a represen-
tative class of locally scaling transformations, and demonstrates the existence of polynomial
maps defining locally scaling transformation with various behaviors, including mixing. Sec-
tion 8 and Section 9 are devoted to demonstrating two interesting classes of locally scaling
maps on Zp that arise naturally in the study of polynomial approximations. Specifically,
Section 8 studies maps which are isometrically conjugate to the natural realization of the
(one-sided) Bernoulli shift, and shows for instance that the map x 7→

(
x
pℓ

)
on Zp is Bernoulli.

Section 9 then studies similar binomial-coefficient maps which are locally scaling and so have
very regular structures but fail to be Haar measure-preserving.

1.1. Acknowledgements. This paper is based on research by the Ergodic Theory group of
the 2005 SMALL summer research project at Williams College. Support for the project was
provided by National Science Foundation REU Grant DMS - 0353634 and the Bronfman
Science Center of Williams College. The authors would like to thank several anonymous
referees for careful readings of the paper and valuable suggestions, and for bringing our
attention to [AV94], [HY83], [RB], [FRL04], and [FRL06].

2. Markov shifts

Let H be a finite non-empty set. By a stochastic matrix on H we mean a map A : H2 →
R≥0 such that

∑

j∈H

A(i, j) = 1 for each i ∈ H.

Putting H into a bijection with the set {0, . . . , #H − 1} we may regard A as a #H ×#H
matrix with non-negative entries and the entries in each row summing to 1. In analogy
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with this case, we will refer to the sets {A(i, ·)} and {A(·, j)} as rows and columns of A,
respectively.

By a row vector on H we mean a map w : H → R. For w a row vector and A a stochastic
matrix, we define their product as the row vector wA defined by

wA(j) =
∑

i∈H

w(i)A(i, j).

We will say that w is non-negative (respectively, positive) if it takes values in R≥0 (resp
R>0).

To any stochastic matrix A we may associate the following symbolic dynamical system:

(i) Let

XA = {x ∈
∏

i≥0

H : A(πn(x), πn+1(x)) 6= 0 for all n ≥ 0}

where πn :
∏

i≥0 H → H is projection to the nth coordinate. Give each finite factor
the discrete topology, and XA the subspace topology inherited from the product
topology

(ii) Let TA : XA → XA be defined by πn ◦ TA = πn+1; that is, TA is simply “shifting
left.” Then (XA, TA) is a topological dynamical system.

(iii) If in addition we are given a non-negative row vector w, then we may define a
measure on XA by

µA,w([d0d1d2 . . . dℓ]) = w(d0)A(d0, d1) · · ·A(dℓ−1dℓ), where [d0 . . . dℓ]
def
=

ℓ⋂

n=0

π−1
n (dn).

We call a set of the form [d0 . . . dℓ] a cylinder set ; we may observe that the cylinder
sets form a base for the topology on XA. Note that if w is in fact positive, then µA,w

assigns positive measure to each cylinder set and hence to each open set. We may
check that if w = wA then TA is measure-preserving with respect to µA,w.

We call such a dynamical system a Markov shift. We say that a dynamical system is
Markov if it is isomorphic to some Markov shift.

We say that a stochastic matrix A is irreducible or ergodic if for each i, j ∈ H there exists
a n ∈ N such that An(i, j) > 0. This condition has a natural interpretation in terms of the
connectedness of a certain directed graph associated with A, as we shall see in the proof
of Proposition 2.1. We say that a stochastic matrix A is primitive if there exists a n ∈ N
such that An(i, j) > 0 for all i, j ∈ H. For ergodic theory preliminaries refer to [Sil08] and
[Wal82].

Using the Perron-Frobenius Theorem on non-negative irreducible and primitive matrices,
along with a graph theoretic interpretation of the stochastic matrix, one may obtain an
ergodic decomposition result for Markov shifts:

Proposition 2.1. Let A be a stochastic matrix, and w a positive row vector such that
w = wA.

Then, we may partition H into disjoint sets

H =
n⊔

k=1

Hk
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such that

(i) A(i, j) = 0 for i ∈ Hk, j ∈ Hℓ with k 6= ℓ; and
(ii) Ak = A|Hk×Hk

is irreducible for k = 1, . . . , n

Then, wk = w|Hk
satisfies wk = wkAk. And we have the ergodic decomposition of (XA, µA,w, TA)

as

(XA, µA,w, TA) =
n⊔

k=1

(XAk
, µAk,wk

, TAk
),

where XAk
is viewed as a TA-invariant subset of XA, so that µAk,wk

= µA,w|Ak
and TAk

=

TA|Ak
.

Moreover, the kth summand is mixing if Ak is primitive.

Proof. Construct a graph on H as follows. We place a directed edge from i→ j if and only if
A(i, j) > 0. As w is strictly positive, this is equivalent to the condition that w(i)A(i, j) > 0.
We say that the flow or flux associated to this edge is w(i)A(i, j). Now, the flow out of i is

∑

j∈H

w(i)A(i, j) = w(i)

as A is a stochastic matrix. The flow into i is∑

k∈H

w(k)A(k, i) = w(i)

as w = wA. So, we see that the flux into and out of i are both equal to w(i).
This implies that for every finite subset of H, the in-flux and out-flux will be equal. For

i ∈ H, let R(i) be the set of points reachable from i, and B(i) the set of points which can
reach i. Note that R(i) has out-flux 0 by construction, and B(i) has in-flux 0 by construction;
as H is finite, these subsets are finite, so both have in-flux and out-flux equal to 0.

Now, we can have no edges into or out of either of these two sets. But, if t ∈ R(i) and
y ∈ B(i), then there is a path from y to t; so we must have t ∈ B(i) and y ∈ R(i), and so
B(i) = R(i). So, B(i) = R(i) is strongly connected, and there are no edges into or out of
this set.

For ℓ > 0, note that Aℓ(i, j) > 0 is equivalent to there being a path of length precisely ℓ
from i to j. It follows that the collection

{B(i) : i ∈ H}

gives our desired decomposition of H.
We readily note that wk = wkAk for for k = 1, . . . , n. Then, as Ak is irreducible, [Wal82,

Theorem 1.19] implies that the kth summand is ergodic, from which the ergodic decomposi-
tion follows. Finally, [Wal82, Theorem 1.31] implies that the kth summand is mixing if Ak

is primitive. �

3. Analytic definitions, preliminaries, and notation

Let K be a non-archimedean local field, which we take to be either a finite field extension
of Qp or Fpn((t)) for some prime p.

Let |·| be a non-archimedean multiplicative valuation (sometimes called a “non-archimedean
absolute value”) on K, such that | · | generates the topology on K. Denote V = |K×| = {|x| :
x ∈ K×}, O = {x ∈ K : |x| ≤ 1} and p = {x ∈ K : |x| < 1} (note that O, p are independent
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of the choice of valuation). It is the case that O is a ring with maximal idea p and that O/p
is a finite field (the residue field). Let p = charO/p, q = #O/p, both finite with q a power
of p.

We denote

Br(x) = {y ∈ K : |x− y| ≤ r},

and call such a set (for any value of r) a ball. A ball of radius precisely r will be called an
r-ball. Let µ be Haar measure on K, normalized such that µ(O) = 1; define ρ : V → R>0 by
ρ(r) = µ(Br(0)).

Now, we recall the following standard results:

(i) O is a discrete valuation ring with unique maximal ideal p;
(ii) p = πO for any π ∈ p \ p2; we call any such π a uniformizing parameter ;
(iii) V is the discrete abelian (multiplicative) subgroup of Q generated by |π|; in light of

this, we may define a map v : K → Z ∪ {+∞} defined by v(0) = +∞ and v(x) =
log|π| |x| for x ∈ K×; this is the additive valuation (sometimes just “valuation”) on
K;

(iv) For r = |π|k, k ≥ 0 it is the case that

ρ(r) = µ(Br(0)) =
(
#O/pk

)−1
= q−k.

Indeed, for r ∈ V we see that ρ(r) = q− log|π| r;
(v) A subset X ⊂ K is compact-open if and only if X is a finite union of balls.

We direct the interested reader to [Ser62] for a thorough treatment of related topics.
We will continue to use the symbols K,µ, p, q, | · |,O, p, π, v,V , ρ, Br with these meanings

below.
Let X be an open subset of K and a ∈ X. Then, we say that a function f : X → K is

strictly differentiable or C1 at a (denoted f ∈ C1(a)) if the limit

lim
(x,y)→(a,a)

x 6=y

f(x)− f(y)

x− y

exists. We write f ∈ C1(X) if f ∈ C1(a) for each a ∈ X. For more on this notion, see [Sch84]
or [Rob00].

4. Measure preserving C1 maps on non-archimedean local fields

Definition 4.1. For X ⊂ K compact-open, we say that a transformation T : X → X
is locally scaling for r ∈ V if X is a finite union of r-balls and if there exists a function
C : X → R≥1 such that

|x− y| ≤ r ⇒ |T (x)− T (y)| = C(x)|x− y| for x, y ∈ X.

We will refer to C as the scaling function.

Remark 4.2. Let us make the following observations about locally scaling transformations:

(i) By the symmetry of x and y in the previous displayed equation, C is constant on
cosets of Br(0). We will write H = X/Br(0) for the set of cosets of Br(0) contained
in X (recall that X is a union of such cosets); we treat elements of H as subsets of
X. Then, C induces a map C : H → R≥1.
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(ii) The terminology “locally scaling” is convenient but perhaps slightly misleading: For
us, such transformations must not only locally scale distances, but must do so by a
factor that is at least 1.

This definition is motivated by the ease of analyzing the structure of such maps together
with the following easy lemma:

Lemma 4.3. Let X ⊂ K be open, and suppose f ∈ C1(X) is such that f ′(x) 6= 0 for x ∈ X.
Then |f ′| is locally constant on X. If, moreover, X is compact, f(X) ⊂ X, and |f ′(a)| ≥ 1
for all a ∈ X, then the transformation f : X → X is locally scaling for some r ∈ V.

Proof. Fix a ∈ X. Since X is open and f ∈ C1(a), there exists ra ∈ V so that Bra(a) ⊂ X
and ∣∣∣∣

f(x)− f(y)

x− y
− f ′(a)

∣∣∣∣ < |f
′(a)| for x, y ∈ Bra(a), x 6= y.

By the strong triangle inequality, it follows that |f(x)− f(y)| = |f ′(a)||x− y| for all x, y ∈
Br(a). In particular, we note that |f ′(x)| is constant on Bra(a).

If X is compact, then there is a finite set a0, . . . , ak ∈ X so that Bra0
(a0), . . . , Brak

(ak) is

an open cover of X. Taking r ≤ mink
i=0 rak

, we see that X is a union of r-balls and that
f restricted to each Br(a) scales distance by |f ′(a)| ≥ 1 by the previous equation. So, f is
locally scaling for r ∈ V with scaling function C(x) = |f ′(x)|. �

Lemma 4.4. Let X ⊂ K be open. Let f ∈ C1(X) be such that f(X) ⊂ X and such that the
transformation f : X → X is measure-preserving with respect to µ|X . Then |f ′(a)| ≥ 1 for
all a ∈ X.

Suppose further that X is compact. Then, f is locally scaling for some r ∈ V. If, in
addition, f is invertible, then it is a local isometry and not weakly mixing.

Proof. Suppose there is an a ∈ X with |f ′(a)| < 1. Take α ∈ V such that |f ′(a)| ≤ α < 1.
As X is open, there exists r′ ∈ V such that Br′(a) ⊂ X and Br′(f(a)) ⊂ X. Moreover, as
f ∈ C1(a) we may take r ∈ V, with r ≤ r′, such that

|f(x)− f(y)− f ′(a)(x− y)| ≤ α |x− y| for any x, y ∈ Br(a).

It follows, by the strong triangle inequality, that |f(x)− f(y)| ≤ |x − y|α for x, y ∈ Br(a).
So, Bαr(f(a)) ⊂ X by construction and moreover f−1 (Bαr(f(a))) ⊇ Br(a). Taking measures
we note that

µ (Bαr(f(a))) = ρ(αr) < ρ(r) = µ (Br(a)) ≤ µ
(
f−1 (Bαr(f(a)))

)
.

So, f is not measure-preserving.
This proves that |f ′(a) ≥ 1 for all a ∈ X. If X is compact, then Lemma 4.3 applies.
If f is invertible and locally scales distances by a constant ≥ 1, then that constant must

be 1. So, f is a locally isometry. Taking r ∈ V small enough so that X is a union or
r-balls and f is locally scaling for r, we note that f descends to a quotient transformation
f : X/Br(0)→ X/Br(0). As f has a finite quotient, it cannot be weakly mixing. �

Remark 4.5. Note that for f ∈ K[x], f ∈ C1(K). So, if f(X) ⊂ X induces a measure-
preserving transformation f : X → X, then Lemma 4.4 and Lemma 4.3 imply that f is
locally scaling.
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Example 4.6. Consider the map f : Z2 → Z2 defined by

f(x) =

(
x

2

)
=

x(x− 1)

2
.

Then,

|f(x)− f(y)| =

∣∣∣∣
(x− y)(x + y − 1)

2

∣∣∣∣ = 2|x− y||x + y − 1|

So, f is locally scaling for r = 1/2, since |x + y − 1| = 1 when |x− y| ≤ 1/2. We will see in
Section 8 that f : Z2 → Z2 is actually measure-preserving and in fact Bernoulli.

Remark 4.7. Suppose f ∈ K[x] defines a transformation f : Zp → Zp. Since f is polyno-
mial, we have f ∈ C1(Zp) and thus, by Lemma 4.3, is locally scaling for some r ∈ V. We can
use the Taylor expansion of f to find such an r (this idea is similar to that in [KN04, p. 33,
Lemma 1.6]). Specifically, writing

f(x + z)− f(x) = zf ′(x) +

deg f∑

k=2

zk

k!
f (k)(x)

we note by the strong triangle inequality that it suffices to choose r so that
∣∣∣∣
f (k)(x)

k!

∣∣∣∣ r
k−1 < |f ′(x)|

for all x ∈ Zp and n ≥ 2.

5. Structure of locally scaling transformations

Lemma 5.1. Let X ⊂ K be compact-open, with T : X → X locally scaling for r ∈ V. Let
C : X → R≥1 be the scaling function of Definition 4.1. Then for each a ∈ X and r′ ∈ V
with r′ ≤ r, the map

T |Br′ (a) : Br′(a)→ Br′C(a)(T (a))

is a bijection.

Proof. Denote B = Br′(a) and B′ = Br′C(a)(T (a)). As C is constant on Br(a), |Tx− Ty| =
C(x)|x − y| = C(a)|x − y| for all x, y ∈ B ⊂ Br(a). This implies that T (B) ⊂ B′, so our
restriction is well-defined. It also implies that the restriction is injective.

For each k ≥ 0 we may take coset representatives a0, . . . , aqk−1 for B/Br′|π|k(0). Then for

i, j ∈ {0, . . . , qk − 1} we have

|T (ai)− T (aj)| = C(a)|ai − aj| > r′C(a)|π|k.

So, T (a0), . . . , T (aqk−1) are precisely the qk coset representatives for B′/Br′C(a)|π|k(0). It
follows that T (B) is dense in B′.

Now, note that T |B is continuous. So, T (B) is the continuous image of a compact set,
thus compact, and so closed. So, T (B) = B′. This proves surjectivity, and the lemma is
proved. �

Corollary 5.2. Let X,T,C be as in Lemma 5.1. Set H = X/Br(0). For any i, j ∈ H,
a ∈ j, and r′ ∈ V with r′ ≤ r, the set

i ∩ T−1 (Br′(a))
7



is either the empty set or a ball of radius r′/C(i), according as whether i ∩ T−1(j) is empty
or not.

Proof. Denote B = Br′(a). Assume i ∩ T−1(j) is not empty, so there is a y ∈ i ∩ T−1(j).
Then, the map

T |Br(y) : i = Br(y)→ BrC(i)(T (y)) ⊇ j ⊇ B

is a bijection. It follows that i ∩ T−1(B) is non-empty, and we may in fact assume that
y ∈ i ∩ T−1(B).

Then, as

T |Br′/C(i)(y) : Br′/C(i)(y)→ Br′(T (y)) = B

is also a bijection, it follows that i ∩ T−1(B) = Br′/C(i)(y). �

Definition 5.3. Let X ⊂ K be compact-open, and let T : X → X be locally scaling for
r ∈ V. Let H = X/Br(0) and C : H → R≥1 be the scaling function. Then, we define the
associated transition matrix to be the map A : H2 → R≥0 given by, for i, j ∈ H,

A(i, j) =

{
0 i ∩ T−1(j) = ∅

ρ (1/C(i)) otherwise

Lemma 5.4. Let X ⊂ K be compact-open and T : X → X be locally scaling for r ∈ V; let
H = X/Br(0) and let A : H2 → R≥0 be the associated transition matrix. Then:

(i) For S ⊂ X measurable and i ∈ H

µ(i ∩ T−1(S)) =
∑

j∈H

µ(S ∩ j)A(i, j).

(ii) A(i, j) = 1
ρ(r)

µ(i ∩ T−1(j));

(iii) A is a stochastic matrix on H;
(iv) T is measure-preserving if and only if the sum of each column of A is 1.

Proof.
(i):
By disjoint additivity of µ, it suffices to prove the equality in the case S ⊂ j for some j ∈ H.
As the balls form a sufficient semi-ring in the Borel σ-algebra of X, we may in addition
assume that S is a ball. Say S = Br′(a) for r′ ≤ r and a ∈ j. Then, by Corollary 5.2 we
know that i∩T−1(S) is either the empty set or a ball of radius r′/C(i), according as whether
i ∩ T−1(j) is empty or not. Taking measures we get

µ
(
i ∩ T−1(S)

)
=

{
0 i ∩ T−1(j) = ∅

ρ(r′/C(i)) otherwise

= µ(S)A(i, j) =
∑

j∈H

µ(S ∩ j)A(i, j).

(ii):
Put S = j in (i). Then we get

µ(i ∩ T−1(j)) = µ(j ∩ j)A(i, j) = ρ(r)A(i, j).
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(iii):
Note that for each i ∈ H, by disjoint additivity of µ along with (ii) we have

ρ(r)
∑

j∈H

A(i, j) =
∑

j∈H

µ(i ∩ T−1(j)) = µ(i ∩X) = µ(i) = ρ(r).

(iv):
If T is measure-preserving then for each j ∈ H we have, by disjoint additivity of µ,

∑

i∈H

A(i, j) =
1

ρ(r)

∑

i∈H

µ(i ∩ T−1(j)) =
1

ρ(r)
µ(X ∩ T−1(j)) =

1

ρ(r)
µ(T−1(j)) = 1.

For the converse we use (i) and disjoint additivity:

µ(T−1(S)) =
∑

i∈H

µ(i ∩ T−1(S)) =
∑

i,j∈H

µ(S ∩ j)A(i, j) =
∑

j∈H

µ(S ∩ j) = µ(S). �

Example 5.5. We consider a polynomial map on Z2 that defines a locally scaling but not
measure-preserving transformation:

f(x) =

(
x

3

)
=

x(x− 1)(x− 2)

3!
.

We note that

|f ′(x)| =

∣∣∣∣
3x2 − 6x + 2

6

∣∣∣∣ =

{
1 x ∈ B1/2(0)

2 x ∈ B1/2(1)

where the final equality follows by computing the values of the numerator modulo 4. In
particular, we see that |f ′(x)| ≥ 1 for all x ∈ Z2 and so f is locally scaling by Lemma 4.3.
One can verify that f is locally scaling for r = 1/2 and that the associated transition matrix
is

A = (A(i, j))0≤i,j≤1 =

(
1 0
1
2

1
2

)
,

identifying i with i + 2Z2 for i ∈ {0, 1}. So,
(

x
3

)
is not measure-preserving by Lemma 5.4.

Proposition 5.6. Let X ⊂ K be compact-open, let T : X → X be a locally scaling trans-
formation for r ∈ V, with Σ = (X,µ, T ) the corresponding measurable dynamical system.

Let H = X/Br(0), let A : H2 → R≥0 be the associated transition matrix, and w : H → R≥0

the positive row vector given by w(i) = ρ(r) for i ∈ H. Let Σ′ = (XA, µA,w, TA) be the
corresponding Markov shift.

Then, there exists a continuous, measure-preserving surjection Φ : X → XA satisfying
Φ ◦ T = TA ◦ Φ. Moreover, the pre-image under Φ of a cylinder set is a ball of the same
measure.

Proof. For each n ≥ 0, let πn : XA → H denote projection to the nth coordinate. Let
φ : X → H be the canonical projection. Consider the map Φ : X → XA defined by

πn ◦ Φ = φ ◦ T n,

i.e., the nth slot in XA denotes which element of H the point T n(x) is in. Then Φ◦T = TA◦Φ
by construction.

Let d0, d1, . . . ∈ H. We will prove by induction on the number of slots specified (the
“length” of the cylinder set [d0 . . . dℓ]) the claim that the pre-image of the cylinder set
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[d0 . . . dℓ] is a ball of the same measure as the cylinder set. Note that Φ−1([d0]) = d0 is
a ball of the correct measure as

µA,w([d0]) = w(d0) = ρ(r) = µ(d0)

by construction. Now,

Φ−1([d0 . . . dℓ]) = Φ−1([d0]) ∩ T−1Φ−1 ([d1 . . . dℓ]) .

By the inductive hypothesis, this is the intersection of two balls, and is thus again a ball; so
Φ is continuous.

Noting that Φ−1([d1 . . . dℓ]) ⊂ Φ−1[d1] = d1 and applying claim (i) of Lemma 5.4, along
with the inductive hypothesis, we see that this ball has the correct measure

µ
(
Φ−1([d0 . . . dℓ])

)
=
∑

j∈H

µ
(
j ∩ Φ−1([d1 . . . dℓ])

)
A(d0, j)

= A(d0, d1)µ
(
Φ−1([d1 . . . dℓ])

)

= A(d0, d1)µ([d1 . . . dℓ]) = µ([d0 . . . dℓ]).

As the cylinder sets are a sufficient semi-ring in the Borel σ-algebra of XA, this shows that
Φ is measure-preserving.

Note that Φ continuous and measure-preserving implies Φ surjective: X is compact and
XA is Hausdorff, so the image must be closed. However, the image must have full measure
and so must be dense (w positive implies that all cylinder sets, hence all open sets, have
strictly positive measure). �

Theorem 5.7. Let X,T,H, Σ, Σ′, Φ be as in Proposition 5.6. Moreover, assume that Σ is
measure-preserving, so that Σ′ is as well.

Now, let H =
⊔n

k=1 Hk be a decomposition of H in the sense of Proposition 2.1, so that

Σ′ =
n⊔

k=1

Σ′
k

where Σ′
k = (XAk

, µAk,w, TAk
).

For k = 1, . . . , n define

Σ̃k =

{
restriction of Σ to Φ−1(XAk

) #XAk
<∞

Σ′
k otherwise

then we have an isomorphism of topological and measurable dynamical systems

Σ ∼=

n⊔

k=1

Σ̃k.

Moreover, each term in this decomposition is either locally an isometry or ergodic Markov,
according as whether #XAk

<∞ or not.

Proof. By Lemma 5.4, Σ′ is a quotient of Σ, so Σ measure-preserving implies Σ′ measure-
preserving.
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For k = 1, . . . , n, denote Ck = Φ−1(XAk
), µk = µ|Ck

, Tk = T |Ck
. The decomposition of Σ′

induces the following decomposition of Σ:

Σ =
n⊔

k=1

(Ck, µk, Tk).

To complete the proof of the proposition, it suffices to show that (Ck, µk, Tk) ∼= Σ̃k for
k = 1, . . . , n as topological and measurable dynamical systems, and to classify them as
being locally isometries and ergodic Markov in the two cases. We now handle the two cases
separately:
Case 1: #XAk

<∞

If #XAk
< ∞, then the isomorphism (Ck, µk, Tk) ∼= Σ̃k follows by definition. Note that the

measure on Σ′
k is necessarily atomic; as it is ergodic, it must in fact be the inverse orbit of

a single atom. As TA, hence TAk
, is measure-preserving, each of the atoms must have equal

measure. It follows that each element x ∈ XAk
is of the form

x = (d0, d1, . . . , dℓ, d0, . . . , dℓ, d0, . . . , dℓ, . . .),

with A(d0, d1) = A(d1, d2) = . . . = A(dℓ, d0) = 1. Then, Φ−1(x) = d0, where C(d0) = 1
(here, C is that from the definition of locally scaling).

So, Ck must be a collection of r-balls with C(x) = 1 for x ∈ Ck. Then, for x, y ∈ Ck with

|x− y| ≤ r we have |T (x)− T (y)| = C(x)|x− y| = |x− y|. This shows that Σ̃k is locally an
isometry, as desired.
Case 2: #XAk

=∞

If #XAk
= ∞, then we claim that Φ induces an isomorphism (Ck, µk, Tk) ∼= Σ̃k. In a

measure-preserving Markov shift, any atoms must have finite inverse orbit; so Σ′
k ergodic

and #XAk
= ∞ implies that µAk,wk

is non-atomic. Recall that Φ is surjective. We claim
that it is also injective. For x ∈ X let dn = πHT n(x) for n = 0, 1, . . .. Then,

Φ−1(Φ(x)) =
⋂

ℓ≥0

Φ−1 ([d0 . . . dℓ]) .

We have from Proposition 5.6 that each of these pre-images is a ball. Then, Φ−1(Φ(x)) is the
intersection of a nested family of balls. If the intersection contains more than a single point,
then the radii of the balls do not go to 0, and so the intersection has non-empty interior and
thus positive measure. Now, the measure on XAk

is non-atomic, so µAk,wk
(Φ(x)) = 0. As Φ

is measure-preserving, this implies that µ(Φ−1(Φ(x))) = 0; by the above considerations this
implies that Φ−1(Φ(x)) contains at most one point. So, Φ is injective.

Then, Φ is a continuous, measure-preserving bijection. Observe that Φ takes closed sets
to closed sets by compactness, so its inverse is also continuous. This also implies that Φ−1

is measurable, and then Φ measure-preserving implies Φ−1 measure-preserving. So, Φ is an

isomorphism of topological and measurable dynamic systems (Ck, µk, Tk) ∼= Σ̃k as desired.
As the later is ergodic Markov, the former is as well. �

Corollary 5.8. Let X ⊂ K be compact-open. Let f ∈ C1(X) be such that f(X) ⊂ X
and such that f : X → X is measure-preserving with respect to µ|X . Then X consists
of a finite disjoint union of compact-open sets such that T restricted to each such set is
either topologically and measurably isomorphic to an ergodic Markov transformation or a
local isometry.
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Proof. By Lemma 4.4 T must be a locally scaling transformation. Theorem 5.7 completes
the proof. �

Corollary 5.9. Let X ⊂ K be compact-open and T : X → X a measure-preserving locally
scaling transformation. If T is ergodic then it is either Markov or locally an isometry.
In particular, if it is weakly mixing then it also Markov and so mixing. So, for a measure-
preserving locally scaling transformation on a compact-open X, weakly mixing implies mixing.
Furthermore, if T is invertible it cannot be weakly mixing.

Proof. If T is ergodic, then the decomposition in Theorem 5.7 must be trivial. So, T must
be either Markov or locally an isometry. If it is locally an isometry, then it cannot be weakly
mixing. So, weakly mixing implies weakly mixing Markov which in turn implies mixing.
If T is invertible it has no Markov factors, and by Proposition 5.6 factors through a finite
dynamical system and hence cannot be weakly mixing. �

Corollary 5.10. For a locally scaling transformation, the following properties depend only
on the associated transition matrix:

(i) Measure-preserving;
(ii) Weakly mixing, mixing, exact, Bernoulli.

Proof. By Lemma 5.4, the property of being measure-preserving depends only on the asso-
ciated transition matrix.

Note that the decomposition in Theorem 5.7 depends only on the associated transition
matrix. Given an associated transition matrix, we have the following cases:

(i) The decomposition is trivial, and the system is a local isometry. Then, it is not
weakly mixing (or any of the stronger properties listed).

(ii) The decomposition is trivial, and the system is ergodic Markov. In this case, the
system is determined up to isomorphism by the matrix.

(iii) The decomposition is not trivial. In this case, the system is not ergodic and cannot
satisfy any of the stronger properties listed. �

6. Polynomial approximation in O

The above results dealt with C1 functions, extending to polynomial maps as a special
case. In the next sections we will be interested in finding polynomial maps with specified
associated transition matrices. In preparation for this, we will need some results on the
approximation of continuous maps O → K. For the reader’s convenience, we will sketch
here the definitions and results of [Ami64], slightly simplified for our applications.

Say X ⊂ O is compact-open. Moreover, assume that X is a finite union of r-balls for
r ∈ V. Then, for r′ ≤ r each r′-ball contained in X is a union of precisely q balls of radius
|π|r′ contained in X. In the terminology of [Ami64], this makes X a regular valued compact
(compact valué régulier in the original French).

For k ≥ log|π| r, we may define Hk = X/B|π|k(0), and a projection map πk : X → Hk.
Then, we say that a sequence {uk ∈ X : k ∈ N} is very well distributed (très bien répartie)
if for each k ≥ log|π| r, h ∈ Hk, and m ≥ 1 we have

#{i < m#Hk : ui ∈ h} = m.
12



That is, the terms of the sequence must be equally distributed among the possible values
mod pk for k ≥ log|π| r. Note that the condition that the {uk} are very well distributed
implies that they are distinct.

Now, given such a sequence {u0, u1, . . .}, we may define the corresponding interpolating
polynomials for k ≥ 0:

Pk(x) = (x− u0)(x− u1) · · · (x− uk−1) and Qk(x) =
Pk(x)

Pk(uk)
.

Then, we may summarize some of the results of [Ami64, §II.6.2] as follows:

Theorem 6.1 (Amice). Let X ⊂ O be compact-open, and let {uk} be a very well distributed
sequence with values in X with Pk, Qk the corresponding interpolating polynomials. Let
f : X → K be continuous, and for k ≥ 0 set

ak = Pk(uk)

(
k∑

j=0

f(uj)

P ′
k+1(uj)

)
.

Then:

(i) |ak| → 0 as k →∞;
(ii)

∑
k≥0 akQk(x)→ f(x) uniformly on X;

(iii) The ak are determined by (ii);
(iv) supx∈X |f(x)| = supk∈N

|ak|.

A very well distributed sequence {uk} is said to be well ordered (bien ordonnée) if |un −
um| = |π|

vq(n−m) for all n,m ≥ 0 where vq(n−m) is the exact power of q dividing n−m ∈ Z.
Following our sources, we will call such a sequence T.B.R.B.O. (très bien répartie bien
ordonnée). This allows us to state results of Helsmoortel and Barsky, characterizing Lipschitz
and C1 functions on O in terms of the coefficients in their expansions. This result may be
found in [Bar73].

Theorem 6.2 (Helsmoortel, Barsky). Let {uk} be a T.B.R.B.O. sequence with values in O,
with Pk, Qk the corresponding interpolating polynomials. Let f : O → K be continuous with

f(x) =
∑

k≥0

akQk(x)

the expansion of f in the sense of Theorem 6.1. For k ≥ 1, define

κk = |π|−⌊logq k⌋.

Then:

(i) f is r-Lipschitz if and only if r ≤ κk|ak| for all k ≥ 1;
(ii) f ∈ C1(O) if and only if κk|ak| → 0 as k →∞.

Example 6.3. Note that {0, 1, 2, . . .} ⊂ Zp satisfies the conditions for being a very well
distributed sequence, and is in fact trivially T.B.R.B.O. Then,

Qk(x) =
x(x− 1) · · · (x− k + 1)

k · (k − 1) · · · · 1
=

(
x

k

)
.

So, in this case the above reduces to the Mahler expansion.
13



More generally: Let a0, . . . , aq−1 be a complete set of coset representatives for O/p. For
k ∈ N, we will define uk in terms of the base-q expansion of k:

k =
ℓ∑

i=0

kiq
i 7−→

ℓ∑

i=0

aki
πi = uk.

Then, say we have n,m ∈ N with n =
∑

i≥0 niq
i and m =

∑
i≥0 miq

i. Let ℓ = vq(i − j) =
min{i : ni 6= mi}. Then,

|un − um| = |π|
ℓ = |π|vq(n−m),

and {uk} is T.B.R.B.O. In particular, this implies that there is always a T.B.R.B.O. sequence
for O, and corresponding interpolating polynomials such that the results cited in this section
hold.

Now, we establish a lemma that will be of particular interest to us:

Lemma 6.4. Let {un} be a T.B.R.B.O. sequence in O with corresponding interpolating
polynomials Pk, Qk Then, for k ∈ N:

(i) Qk(O) ⊂ O;
(ii) Qk is κk-Lipschitz, with κk as in Theorem 6.2;
(iii) If k = qℓ for some ℓ ≥ 0, then

|Qk(x)−Qk(y)| = κk|x− y| for all x, y ∈ O with |x− y| ≤ 1/κk.

Proof. Claim (i) follows by applying Theorem 6.1(iv) with f = Qk (so that ai = 1 for i = k
and 0 otherwise). Claim (ii) follows similarly from Theorem 6.2.

Assume k = qℓ. Fix x, y ∈ O with |x − y| ≤ 1/κk; as the {un} are very well distributed
there is some m ∈ {0, . . . , k − 1} such that |x− um| ≤ 1/κk (hence also |y − um| ≤ 1/κk).

Define a polynomial

Sj(z) =
∑

0≤i1<i2<···<ij<k

(y − u0) · · · ̂(y − ui1) · · ·
̂(y − uij) · · · (y − uk−1)

(uk − uk−1) · · · (uk − u0)
.

Then, we may observe that

Qk(x
′)−Qk(y

′) =
(x′ − uk−1) · · · (x

′ − u0)− (y′ − uk−1) · · · (y
′ − u0)

(uk − uk−1) · · · (uk − u0)
=

k∑

j=1

(x′ − y′)jSj(y
′)

for any x′, y′ ∈ O. Then,

Qk(x)−Qk(y) = (Qk(x)−Qk(um))− (Qk(y)−Qk(um))

= (x− y)S1(um) +
k∑

j=2

Sj(um)
(
(x− um)j − (y − um)j

)
.

We will prove the following two statements, which together with the strong triangle in-
equality and the previous expression imply our desired result:

(i) |S1(um)| = κk;
(ii) |Sj(um)| < κj

k for 1 < j ≤ k.
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That this suffices is clear, for the j = 1 term will dominate in valuation.
Observe that

S1(um) =
(y − u0) · · · ̂(y − um) · · · (y − uk−1)

(uk − u0) · · · (uk − uk−1)

and that

Sj(um) =
∑

0≤i1<i2<···<ij<k

m∈{i1,...,ij}

(um − u0) · · · ̂(um − ui1) · · ·
̂(um − uij) · · · (um − uk−1)

(uk − uk−1) · · · (uk − u0)
.

Suppose {vn} is a very well distributed sequence. Then, it is easy to check that {v0, . . . , vk−1}
must contain precisely qℓ′ elements bounded by πℓ′ for each ℓ′ ≤ ℓ. Now, observe that both
{um − un : n ∈ N} and {uk − un : n ∈ N} are very well distributed. Let m′ be the unique
index in {0, . . . , k − 1} such that |uk − um′ | ≤ 1/κk; the very well distributed property of
{un} implies that this is in fact an equality. Our previous count implies that we must have

∣∣∣∣∣
(y − u0) · · · ̂(y − um) · · · (y − uk−1)

(uk − u0) · · · ̂(uk − um′) · · · (uk − uk−1)

∣∣∣∣∣ = 1.

So,

|S1(um)| =

∣∣∣∣
1

uk − um′

∣∣∣∣ = κk.

Now,

∣∣∣∣
Sj(um)

Si(um)

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∑

0≤i1<i2<···<ij−1<k

m/∈{i1,...,ij1
}

1

(um − ui1) · · · (um − uij−1
)

∣∣∣∣∣∣∣∣
< κj−1

k ,

for |um − ui1 |, . . . , |um − uij−1
| > 1/κk as {un} is very well distributed (and so the first k

elements must be in disjoint 1/κk-balls). This completes our proof. �

7. Polynomial maps on O realizing locally scaling transformations

Sections 4 and 5 characterize measure-preserving polynomial transformations on O in
terms of locally scaling transformations. However, we have shown the existence of only a
handful of such maps. In this section, we will show that in fact the polynomials, in a sense,
provide a representative class among the measure-preserving locally scaling maps.

We begin with a lemma giving sufficient conditions for two maps to have the same asso-
ciated transition matrices.

Lemma 7.1. Suppose T : O → O is locally scaling for r ∈ V; set H = O/Br(0), let
C : H → R≥1 be the scaling function for T , and let A : H2 → R≥0 be the associated
transition matrix for T . Suppose in addition that S : O → O is a transformation such that
the difference R = T − S satisfies

(i) |R(x)−R(y)| < C(x)|x− y| whenever 0 < |x− y| ≤ r;
(ii) |R(x)| ≤ rC(x) for all x.

Then, S is locally scaling for r ∈ V, with scaling function C and associated transition matrix
A.
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Proof. For 0 < |x− y| ≤ r we have

|S(x)− S(y)| = |T (x)− T (y) + R(x)−R(y)| = |T (x)− T (y)| = C(x)|x− y|

by the strong triangle inequality. Indeed, |T (x)−T (y)| = C(x)|x−y|, which by (i) is strictly
greater than |R(x)−R(y)|. So, S is locally scaling for r ∈ V, with scaling function C.

Now, it remains to verify that i ∩ T−1(j) = ∅ ⇔ i ∩ S−1(j) = ∅ for i, j ∈ H. For this, it
suffices to show that T (Br(x)) = S(Br(x)) for all x ∈ O. Indeed, applying Lemma 5.1 and
(ii) yields

T (Br(x)) = BrC(x)(T (x)) = BrC(x)(S(x)) = S(Br(x)). �

For S ⊂ K we say that T : S → K is affine if it is given by x 7→ ax+ b for some constants
a, b ∈ K. We say that T : O → K is locally affine if for each x ∈ O there exists a r ∈ V
such that T |Br(x) is affine.

Theorem 7.2. Let r ∈ V and H = O/Br(0). Let A be a stochastic matrix on H. Then, let

TA = {T locally scaling for r : A is the associated transition matrix for T}.

If TA is non-empty then:

(i) TA contains a locally affine transformation;
(ii) TA contains infinitely many polynomials.

Proof.
(i):
Suppose T ∈ TA. Let C : H → R≥1 be the scaling function in the definition of locally scaling
and observe that its image is contained in V . Let S : H → K be any function satisfying
|S(h)| = C(h) for all h ∈ H. Then, for each h ∈ H we observe that T (h) = {T (x) : x ∈ h}
and S(h)h = {S(h)x : x ∈ h} are both balls of radius C(h)r. So, there exists a function
(indeed, many of functions) M : H → K such that T (h) = S(h)h + M(h). Regarding S and
M as functions with domain O via the quotient map O → H, we may define a locally affine
transformation TS,M : O → O by the formula TS,M (x) = S(x)x + M(x).

Since S,M are constant on elements of H and |S(h)| = C(h), it follows at once that TS,M

is locally scaling for r with scaling function C. By construction, TS,M (h) = T (h) (which
is also why TS,MO ⊂ O), so that TS,M ∈ TA by the definition of the associated transition
matrix.

(ii):
Let T ∈ TA. By (i), we may assume that T is locally affine and hence strictly differentiable.
Let {uk} be a T.B.R.B.O. sequence in O (which must exist by Example 6.3). Let

T =
∑

k≥0

akQk.

be the decomposition of T in the sense of Theorem 6.1
Take α ∈ V with α < 1. By Theorem 6.2, κk|ak| → 0 as k →∞, so there exists an N ∈ N

such that for k > N we have κk|ak| ≤ α < 1. Moreover, take N such that N > #H.
Let

f(x) =
N∑

k=0

akQk(x).
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Note that f is a polynomial. Set

R(x) = T (x)− f(x) =
∑

k>N

akQk(x).

Our bound on κk|ak| along with the choice N > #H = qlog|π| r implies that |ak| < 1/κN ≤ r
for k > N ; so Theorem 6.1(iv) implies that |R(x)| ≤ r for all x ∈ O. Lemma 6.4 implies that
R is α-Lipschitz, so that |R(x)− R(y)| ≤ α|x− y| for x, y ∈ O. Noting that α < 1 ≤ C(x)
for all x ∈ O, we observe that we may apply Lemma 7.1 to conclude that f ∈ TA.

Note that if

g(x) =
∑

k>N

bkQk(x)

is a polynomial such that κk|bk| ≤ α, then the above argument also shows that f + g ∈ TA.
So, there are indeed infinitely many polynomials in TA. �

In particular, Theorem 7.2 shows the existence of measure-preserving mixing transforma-
tions on the p-adics given by polynomial maps. We can also use this method to compute
explicit examples of such maps, but it is not particularly enlightening to do so.

8. Polynomial Bernoulli maps on O

The construction of the preceding section gives infinite classes of measure-preserving poly-
nomials with different kinds of measurable dynamics. Among these maps are Markov mixing
maps. We will now study the class of such polynomials whose associated transition matrix
has all entries equal, in which case the Markov transformation is in fact Bernoulli. The main
upshot of this study is a class of explicitly given and relatively simple measure-preserving
Bernoulli polynomial maps.

Definition 8.1. We say that a measure-preserving locally scaling map T : O → O is
isometrically Bernoulli for r ∈ V if it is locally scaling for r ∈ V and all entries of the
associated transition matrix are equal.

Let V = O/pℓ ∼= Fℓ
q and define

BV =

(
∏

i≥0

V, µV , TV

)

where µV is the product probability measure, and TV the left-shift. We may let d′
V be the

quotient metric on V . Then, we may define a metric dV on
∏

i≥0 V by

dV ((a0, a1, a2, . . .), (b0, b1, b2, . . .)) = |π|−ℓ(m−1)d′
V (am, bm) where m = min{i : ai 6= bi}.

We give two justifications for this metric:

(i) View elements of V as ℓ-tuples under the isomorphism Fℓ
q
∼= V corresponding to

π-adic expansion (i.e., the isomorphism induced by the map shown in (ii)). Then,
expanding each element in the product to a ℓ-tuple, dV is just the dictionary metric
(with base |π|).
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(ii) For each a ∈ V we may let a ∈ O be a coset representative for the quotient. Then,
the map

(a0, a1, . . .) 7−→
∑

i≥0

aiπ
ℓi

gives a bijection
∏

i≥0 V → O. This metric is the unique metric making this map
an isometry.

Now, the term isometrically Bernoulli is partially motivated by the following:

Lemma 8.2. Let T : O → O be a transformation and let ℓ ≥ 1. Then, the following are
equivalent:

(i) T is isometrically Bernoulli for r = |π|ℓ;
(ii) For all x, y ∈ O satisfying |x− y| ≤ |π|ℓ,

|T (x)− T (y)| = |π|−ℓ|x− y|.

(iii) Let V = O/pℓ. There exists an invertible isometry Φ : O →
∏

i≥0 V such that
Φ ◦ T = TV ◦ Φ; that is, (O, µ, T ) is metrically isomorphic to BV .

Proof. (i)⇒(ii):
Let H = O/Br(0), and A : H2 → R≥0 the associated transition matrix. Note that if T is
isometrically Bernoulli, then each entry of A must be equal, and hence must be equal to

1
#H

= ρ(r). Now, T must be locally scaling for r ∈ V, so |T (x) − T (y)| = C(x)|x − y| for

|x− y| ≤ r = |π|ℓ. But, we must have ρ(1/C(x)) = ρ(r), so C(x) = 1/r = |π|−ℓ.

(ii)⇒(iii):
Let V = O/pℓ. Now, (ii) implies that T is locally scaling for r. Letting A be the associated
transition matrix, we readily note that all non-zero entries of A must be equal to ρ(|π|ℓ); as
A is a stochastic matrix, this implies that all entries of A are non-zero.

Now, let Σ′ = (XA, µA,w, TA) be as in Theorem 5.7. We see that BV = Σ′. We observed
above that all entries of A are non-zero; then, A is irreducible and Theorem 5.7 gives us
a topological and measurable isomorphism Φ : O → XA. Note that the balls of XA with
respect to dV are just the cylinder sets. Moreover, one may check that for each m ≥ 0,
XA is a disjoint union of qm balls of radius r = |π|m, which must then each have measure
q−m = ρ(r). Then, Proposition 5.6 implies that Φ−1 takes balls of a given radius to balls of
the same radius; moreover, Φ−1 must take each of the qm distinct balls of radius |π|m in XA

to a distinct ball of radius |π|m in O. So each ball of radius |π|m in O must be the pre-image
of precisely one ball of the same radius in XA. It follows that Φ and Φ−1 are both isometries.

(iii)⇒(i):
Note that for x, y ∈ O we have

|T (x)− T (y)| = dV (Φ(T (x)), Φ(T (y))) = dV (TV (Φ(x)), TV (Φ(y))).

Then, for dV (Φ(x), Φ(y)) = |x− y| ≤ |π|ℓ we compute

dV (TV (Φ(x)), TV (Φ(y))) = |π|−ℓdV (Φ(x), Φ(y)) = |π|−ℓ|x− y|. �

Remark 8.3. Note that item (ii) of Lemma 8.2 implies that T is |π|−ℓ-Lipschitz.

Now, we may combine Lemma 6.4 with Lemma 8.2 to get:
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Corollary 8.4. Let {uk} be a T.B.R.B.O. sequence with values in O, with corresponding
interpolating polynomials Pk, Qk. Say T : O → O is given by the expansion, in the sense of
Theorem 6.1,

T (x) =
∑

k≥0

akQk(x), with ak ∈ O, |ak| → 0.

Assume that

(i) M = maxk≥0 κk|ak| exists, where κk is as in Theorem 6.2;
(ii) There is a unique kM ≥ 0 attaining this maximum, and moreover it is of the form

kM = qℓ for some ℓ ≥ 1;
(iii) |akM

| = 1 (hence, M = κkM
).

Then, T is isometrically Bernoulli for r = 1/M ∈ V.

Proof. As kM is the unique value attaining the maximum, the strong triangle inequality and
Lemma 6.4 imply that

|T (x)− T (y)| =

∣∣∣∣∣
∑

k≥0

ak [Qk(x)−Qk(y)]

∣∣∣∣∣ = κkM
|akM
||x− y| = M |x− y|

for |x− y| ≤ 1/κkM
= 1/M . Then, our claim follows by Lemma 8.2. �

Example 8.5. Let K = Qp and O = Zp. Then, {0, 1, 2, . . .} is a T.B.R.B.O. sequence, and
letting Pk, Qk be the corresponding interpolating polynomials we can check that Qk(x) =

(
x
k

)

(cf. Example 6.3). In this case, κk = p⌊logp k⌋. Therefore, we can rewrite the sufficient
conditions in Corollary 8.4 as follows. Given T : Zp −→ Zp defined by

T (x) =
∑

k≥0

ak

(
x

k

)

assume that

(i) M = maxk≥0 |ak|p
⌊logp k⌋ exists;

(ii) There is a unique kM ≥ 0 attaining this maximum, and moreover it is of the form
kM = pℓ for some ℓ ≥ 1;

(iii) |akM
| = 1 (thus, M = pℓ).

Then T is isometrically Bernoulli for r = p−ℓ. In particular, the polynomials
(

x
pℓ

)
for ℓ > 0

clearly satisfy these conditions, and so each defines a Bernoulli transformation on Zp.
Note, in particular, that this criterion applies to any map Zp → Zp defined by u

(
x
p

)
+F (x)

with u ∈ Z×
p and F ∈ Zp[x]. An example of such a map is that given by xp−x

p
from [WS98].

In this context, the polynomials
(

x
p

)
and xp−x

p
are in a sense the most natural isometrically

Bernoulli maps:

Example 8.6. Take a set of coset representatives for Zp/pZp. Then, using Example 6.3 we
may form a T.B.R.B.O. sequence, and then the pth corresponding interpolating polynomial
(and unit multiples of it) will be Bernoulli by Corollary 8.4.

Let’s look at the two most common sets of coset representatives for the quotient Zp/pZp:

(i) Take as coset representatives 0, 1, 2, . . . , p − 1. The resulting T.B.R.B.O. sequence
is {0, 1, . . .}. Then, Pp(x) = x(x − 1) · · · (x − p + 1) and Qp(x) =

(
x
p

)
is the pth

corresponding interpolating polynomial.
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(ii) Take as coset representatives 0 and the (p − 1)st roots of unity (there are exactly
p−1 by Hensel’s Lemma); these are called the “Teichmüller representatives.” Then,
Pp(x) = xp − x and

Qp(x) =
Pp(x)

Pp(p)
=

1

pp−1 − 1

xp − x

p
.

So, the polynomials
(

x
p

)
and xp−x

p
(up to unit) are analogs, arising by the same construction

from the two most common choices for the coset representatives of Zp/pZp.

Example 8.7. Let K = Fq((t)) and O = Fq[[t]]. We may construct a T.B.R.B.O. sequence
as in Example 6.3, having 0, 1, 2, . . . , q − 1, t as its first q + 1 terms. Then

Qq(x) =
x(x− 1) . . . (x− q + 1)

t(t− 1)(t− 2) . . . (t− q + 1)
,

which is isometrically Bernoulli by Corollary 8.4. However, t− 1, t− 2, . . . , t− q + 1 are all
units in O, thus

t(t− 1) . . . (t− q + 1)Qq(x) =
x(x− 1) . . . (x− q + 1)

t

defines a Bernoulli transformation as well.

Now, we will give two examples of isometrically Bernoulli polynomial maps on the rings of
integers of finite extensions of Qp. First, we briefly motivate our choice of examples. For K
a finite extension of Qp, let n = [K : Qp],f = [O/p : Fp], and e = log|π| |p|. It is a standard
result that ef = n. It is evident that the nature of how O compares to Zp depends on the
values of e and f . The two extreme cases are f = 1, e = n (in which case we say that the
extension is totally ramified) and e = 1, f = n (in which case we say that the extension is
unramified). We give an example from each of these two extremes. For more background on
the relevant theory, including the “standard” results invoked in this paragraph and in the
following two examples see [Ser62], particularly Ch. I §7, 8., Ch. III §5, Ch. IV §4.

Example 8.8. Take p > 2 and let

K = Qp(ζp) where ζp is a primitive pth root of unity.

It is a standard result that 1 − ζp may be taken as a uniformizing parameter and that
the extension is totally ramified and so the set {0, . . . , p − 1} gives a complete set of coset
representatives for O/p. We may construct a T.B.R.B.O. sequence as in Example 6.3. The
first p terms would be just 0, . . . , p− 1, with the next term 1− ζp. The first p2 terms would
be {i + j(1 − ζp)} for 0 ≤ i, j < p, with the next term (1 − ζp)

2. Noting that q = p and
applying Corollary 8.4 shows that the transformations defined by the polynomials

x(x− 1) . . . (x− p + 1)

1− ζp

and
1

(1− ζp)3

∏

0≤i,j<p

(x− i− j(1− ζp))

are isometrically Bernoulli for r = |π|1 = |p|
1

p−1 and r = |π|2 = |p|
2

p−1 , respectively.
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Example 8.9. Take f > 1 and let

K = Qp(ζ) where ζ is a primitive (pf − 1)th root of unity.

It is a standard result that K is the unique unramified extension of Qp of degree f . So, p may

be taken as a uniformizing parameter. Let ζ ∈ O/p be the image of ζ under the quotient
map. We note that ζ must generate the residue field extension, i.e., O/p = Fp(ζ) = Fp[ζ].
So, S = {a0 + a1ζ + . . . + af−1ζ

f−1}, with 0 ≤ a0, a1, . . . , af−1 < p, is a complete set of
coset representatives for O/p. Applying the construction of Example 6.3 we may construct
a T.B.R.B.O. sequence whose first q = pf terms are precisely the elements of S, with the
following term being p. Then, applying Corollary 8.4 shows that the transformation defined
by the polynomial

1

p

∏

0≤a0,a1,...,af−1<p

(x− a0 − a1ζ − · · · − af−1ζ
f−1)

is isometrically Bernoulli for r = |p|.

Remark 8.10. Define, as usual,

Ẑ = lim←−
n,|

Z/nZ ∼=
∏

p

Zp.

We briefly note that the results of this section allow us to produce examples of maps f :
N → Z which extend to Bernoulli maps on Zp for each p, and hence to a Bernoulli map on

Ẑ. More explicitly, we obtain the following Proposition:

Proposition 8.11. Let a0, a1, . . . be a sequence of integers satisfying the following conditions
for each rational prime:

(i) |ak|p = 1 for k = p;
(ii) |ak|p < p−⌊logp k⌋ for k > p.

Define f : N→ Z by

f(n) =
n∑

k=0

ak

(
n

k

)
.

Then, f extends to an isometrically Bernoulli transformation f : Zp → Zp for each prime p.

Proof. For each prime p, note that the quantity p⌊logp k⌋|ak|p attains its maximum for k = p
(and for no other k) and that |ak|p = 1. Then, the result is immediate by Corollary 8.4. �

9. Polynomial almost Bernoulli maps on Zp

An important condition shared by isometrically Bernoulli polynomials maps is that their
derivatives must have constant valuation. We may use this observation to come up with
a class of interesting non-examples. Our non-examples will be polynomial maps whose
derivatives have constant valuation, but that are not measure-preserving.

Proposition 9.1. Given n ∈ N, the map f : Zp → Zp defined by

f(x) =

(
x

n

)
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satisfies |f ′(x)| = C for some C ∈ V and for all x ∈ Zp if and only if n = apℓ, with 1 ≤ a < p
and ℓ ∈ Z≥0, and

1

u
+ . . . +

1

u + a− 1
6≡ 0 (mod p)

for each u ∈ {1, 2, . . . , p− a}, where inverses mod. p are taken in F∗
p.

Proof. Write n = apℓ + r, a < p, r < pℓ. We first wish to show that r = 0. We may compute

|f ′(a)| =

∣∣∣∣
(

n− 1

a

)∣∣∣∣ / |n| for 0 ≤ a ≤ n− 1.

If r ≥ 1, then (1 + t)r−1 ≡ (1 + tp
ℓ
)a(1 + t)r−1 (mod p) has no tp

ℓ−1 term, so we see that
|f ′(p − 1)| < |f ′(0)|. Thus, r = 0. Note that |f ′(x)| is constant on Zp iff it is constant
on Z, since Z ⊂ Zp is dense. For x ∈ Z, we observe that the set {x, x − 1, . . . , x − n + 1}
contains precisely n/pk terms divisible by pk for k ≤ ℓ, and either zero or one term divisible
by some higher power of p. By the strong triangle inequality, we note that |f ′(x)| ≤ pℓ,
with equality if there is a term divisible by pℓ+1. If no term is divisible by pℓ+1, then let
upℓ, (u+1)pℓ, . . . , (u+a−1)pℓ be the terms divisible by pℓ and observe that u, u+1, . . . , u+a−1
are coprime to p. An easy computation shows that |f ′(x)| = pℓ if and only if

a−1∑

i=0

(u + i)−1 6≡ 0 (mod p). �

Remark 9.2. Suppose the hypotheses of the Proposition hold. Then, we may compute the
value of f(x) (mod p) by performing a careful but easy computation involving cancelling
corresponding powers in x(x− 1) · · · (x− n + 1) (henceforth, “the numerator”) and n!. The
only terms which are not obviously matched are those corresponding to terms divisible by
pℓ. Suppose upℓ, . . . , (u + a− 1)pℓ are the terms in the numerator divisible by pℓ, where now
we need not assume that u, . . . , u + a− 1 are coprime to p. Then,

f(x) ≡

∏a−1
i=0 (u + i)

a!
(mod p).

The simplest family of maps satisfying the hypotheses of Proposition 9.1 is that in the
following Corollary:

Corollary 9.3. Let p ≥ 3, then n = (p− 2)pℓ satisfies the conditions of Proposition 9.1 and
so |f ′(x)| = pℓ for all x ∈ Zp.

Proof. We may verify the last condition of Proposition 9.1 by an easy computation. �

Example 9.4. Suppose p ≥ 3, ℓ ≥ 1, and n = (p−2)pℓ. Define a transformation f : Zp → Zp

by

f(x) =

(
x

n

)
.

By the Corollary, we have that |f ′(x)| = pℓ for all x ∈ Zp. Mimicking the proof of Lemma 6.4
we can show that f is locally scaling for r = p−(ℓ+1). Moreover, since (p−1)! ≡ −1 (mod p),
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the computation of the previous Remark yields

f(x) (mod p) ≡





0 if x ≡ 0, 1, . . . , n− 1 (mod pℓ+1)

1 if x ≡ n, n + 1, . . . , n + pℓ − 1 (mod pℓ+1)

−1 if x ≡ n + pℓ, . . . , pℓ+1 − 1 (mod pℓ+1)

Identifying i ∈ {0, 1, . . . , pℓ+1 − 1} with i + pℓ+1Zp, the associated transition matrix for f is
thus

A = (A(i, j))0≤i,j<pℓ+1 =





p−2
p

if i ≡ 0, 1, . . . , n− 1 (mod pℓ+1) and j ≡ 0 (mod p)
1
p

if i ≡ n, n + 1, . . . , n + pℓ − 1 (mod pℓ+1) and j ≡ 1 (mod p)
1
p

if i ≡ n + pℓ, . . . , pℓ+1 − 1 (mod pℓ+1) and j ≡ −1 (mod p)

So, if p 6= 3, we see that f is not measure-preserving. However, A does have a left-
eigenvector of eigenvalue 1:

w = (w(i))0≤i<pℓ+1 =

{
p−2

p
if i ≡ 0 (mod p)

1
p

if i ≡ ±1 (mod p)

This corresponds to an f -invariant measure µ̃ on Zp defined on any µ-measurable set S ⊂ Zp

by

µ̃(S) =
p− 2

p
µ (S ∩Br(0)) +

1

p
µ (S ∩Br(1)) +

1

p
µ (S ∩Br(−1)) .

Then, the map Φ defined in Proposition 5.6 gives a measurable isomorphism of (Zp, µ̃, f)
with (XA, µA,w, TA), where the latter dynamical system is mixing Markov.
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