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1. Introduction

The goal of this note is to describe a functorial relationship between D-modules on X and quasi-coherent
sheaves on the derived loop space LX, for X an algebraic space of finite type over a char. 0 field k. Note
that X is not necessarily assumed smooth.
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This is a generalization of work of Toën/Vezzosi and Nadler/Ben-Zvi to the case where X is not assumed
smooth, with the added motivation that it is better compatible with the usual functoriality on D-modules.
Indeed, the usual functors on D-modules satisfy the compatibilities (e.g., adjunctions) that one would expect
of functors called f ! and f∗ – not f∗ and f∗ – so that it is desirable to compare them to sheaves on LX
with similar functoriality. This will require us to replace quasi-coherent complexes with the Ind-coherent
complexes of the title.

The present document will be halfway between a real paper and an announcement – we will try to state
all the results, to survey the broad ideas that go into it, and to indicate the key pieces and steps in the proofs
(often just by stating the Lemmas along the way). A detailed exposition, with full proofs, will appear in [P2].

1.1. Decategorified results. One motivation for this is to study the functoriality of the idea, due to
Toen-Vezzosi and others, that R-linear categories roughly categorify D-modules on SpecR. For instance, we
may interpret functions on the loop space as the Hochschild cochains HH•(Perf X).

Thus the work of Toen-Vezzosi and others can be viewed as categorifying, at least in the smooth case, the
following beautiful result of Feigin and Tsygan:

Theorem 1.1.1 (Feigin-Tsygan). Suppose that X is an affine scheme of finite type over a char. 0 field
k. Then, the k-linear periodic cyclic homology of X is naturally isomorphic to the Z/2-graded infinitesimal
cohomology of X:

HnHPk
•(X) ' ⊕i∈ZHn+2i

dR (X).

Furthermore, this identification can be made functorially with respect to pullback.

We will find it easier to work with the Grothendieck dual situation: We replace Perf X by DCohX.
[P1, Appendix B] explains that HH•(DCohX) can be identified with the distributions on LX, etc. In this
way, our categorical results will imply the following Grothendieck/Poincaré dual statement to Theorem 1.1.1
which we believe is of independent interest:

Theorem 1.1.2. Suppose that X is a quasi-compact and separated algebraic space of finite type over a
char. 0 field k. Let DCohX denote the dg-category of quasi-coherent complexes on X with bounded coherent
homology sheaves. Then, there is an identification of the k-linear periodic cyclic chains of DCohX with the
Z/2-graded (de Rham) Borel-Moore chains on X:

HP•(DCohX) ' CBM,dR
• (X)Z/2

Furthermore, this identification can be made functorially with respect to quasi-smooth pullback and proper
pushforward.

Notice that Theorem 1.1.2 serves as a test for the “functoriality” assertions – while de Rham cohomology
is most easily seen as endomorphisms, the Borel-Moore chains are most easily seen as a pushforward (of the
dualizing complex f !k).

Also, let us make a notational remark: since all our proofs will go via derived algebraic geometry, for us a
scheme / algebraic space / etc. is a derived scheme/ etc. unless explicitly called “classical” or “discrete.”

1.2. Main results – small categories. In our formulation, the relationship will be defined completely
naturally – without “formulas” – and depends on two contructions. The first is classical: We will think of
D-modules as crystals, i.e., as sheaves on the de Rham space:

Definition 1.2.1. If X is a pre-stack, we let XdR be the de Rham pre-stack of X:

XdR(R) := X((π0R)red)

for all connective derived rings R ∈ CAlg. This depends only on the underlying reduced, classical sub-pre-
stack of X. Note also that there is a natural map X → XdR.

1.2.2. If X is an algebraic space, then X and LX have the same underlying reduced, classical sub-pre-stack.
In particular, XdR → (LX)dR is an equivalence. Thus, there is a natural SO(2)-equivariant diagram

LX −→ (LX)dR ' XdR

where the SO(2)-action on XdR is the trivial one and the final equivalence is induced from the inclusion of
constant looks X → LX.

2



Ind-coherent complexes on loop spaces and connections Anatoly Preygel

Second, we need the Tate construction for dg-categories1 with SO(2)-action:

Definition 1.2.3. Suppose that C ∈ (dgcatidm
k )SO(2) is a small, stable, idempotent complete dg-category

with SO(2)-action. Then, the invariant category

CSO(2)

is again a small, stable, idempotent complete dg-category. But in fact it has extra structure – it is a module
category over (Perf k)SO(2) = Perf C∗(B SO(2), k). We will once-and-for-all identify C∗(B SO(2), k) ' k[[u]]
as E∞-algebras, where u has homological grading −2, and refer to CSO(2) as a k[[u]]-linear category. Then,2

CTate := CSO(2) ⊗k[[u]] k((u)) ∈ dgcatidm
k((u)).

The simplest form of our main result is

Theorem 1.2.4. Suppose that X is an algebraic space almost of finite type over a characteristic-zero field k.
Then, the natural SO(2)-equivariant map

π : LX → XdR

described above induces a natural equivalence of 2-periodic (=k((u))-linear) dg-categories

π∗ : DCoh(LX)Tate ∼−→ DCoh(XdR)⊗k k((u))

where the right hand-side consists of Z/2-graded coherent right crystals on X.

1.3. Main results – large categories (with t-structures!) In order to prove Theorem 1.1.2 from Theo-
rem 1.2.4 one needs to do a bit of work because one needs more functoriality than DCoh can offer: Non-proper
pushforward, and some form of π!. Thus we want to pass to a bigger category: QC or (for reasons of

functoriality) QC! := Ind DCoh.
We are then faced with the question of what the analog of the Tate construction should be. The naive guess

would be that one should replace just imitate the definition above in the world of presentable ∞-categories.
Unfortunately, one immediately sees that some extra care is required in defining the Tate construction even
in case of X = pt:

Example 1.3.1. Suppose that X = pt and thus LX = XdR = pt as well. Then,

QC(X) = Ind DCoh(LX) = k-mod

One can produce k[[u]]-linear equivalences of ∞-categories

(k-mod)SO(2) ' H∗(SO(2), k)-mod ' (k[[u]]-mod)u−nil

where the super-script u-nil denotes the full subcategory of locally u-torsion modules.3 In particular, one sees
that naively imitating the definition for the Tate construction above – i.e., taking the tensor product in the
sense of presentable ∞-categories – we have

(k-mod)Tate ' (k[[u]]-mod)u−nil ⊗k[[u]] k((u)) = {0}.
At the other extreme, we could work in the world of compactly-generated categories and functors that

preserve colimits and compact objects. This is too much, since non-proper pushforward and π! don’t
generally preserves the compact objects DCoh. Fortunately, one encounters a similar situation in building
the functoriality for Ind DCoh and there is a fix using the t-structures!

1.3.2. Indeed, in order to recover k((u))-mod one must do something trickier. We were led to our preferred
solution by [P1] where these same categories occured in a different way: Let Ω0A1 denote the derived fiber

product pt×A1 pt. One sees in op.cit. that QC(A1) ' (k[[u]]-mod)u−nil while QC!(A1) ' k[[u]]-mod. Certainly
one way to bridge this gap is to restrict to some small subcategory – but another is to use the sort of
t-structure trickery that is helpful in dealing with QC!. This trickery essentially amounts to murmuring the
words “left t-exact up to a finite shift / left t-bounded” repeatedly, but turns out to be convenient.

1i.e., objects of the ∞-category dgcatidmk of small, stable, idempotent complete Perf k-module categories↑
2When dealing with small stable idempotent-complete dg-categories, we take the notation D⊗R R′ to be synonymous with

D⊗Perf R Perf R′.↑
3i.e., A dg-module M is locally u-torsion if every map from a perfect complex becomes nullhomotopic after applying some

power of u; equivalently, if every element of π∗M is annihilated by some power of u.↑
3
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Very roughly, the trick will be to restrict ourselves to categories that are compactly generated with
t-structures that restrict to bounded t-structures on the compact objects (“regular”); and to functors that are
colmit preserving and left t-exact (up to a finite shift). This allows enough functors that the pushforward and

π! on QC! are allowed, but few enough functors so that we still get the correct category of SO(2)-invariants.

1.3.3. We’ll discuss this trickery in more detail in Section 4: There we define the notions of (left) complete,
coherent, and regular t-structures. For instance, QC(X) is complete for any reasonable stack X. If X

is Noetherian, then both QC(X) and QC!(X) are coherent and QC!(X) is regular. Given a presentable
∞-category C with coherent t-structure there are two dual constructions – completion, and regularization:

R(C)→ C→ Ĉ. Both Ĉ and R(C) can be recovered purely from the ∞-category C<0 but by rather different
reconstruction procedures.

The formation of C → R(C) is easy to describe: One picks out Coh(C) ⊂ C to consist of the bounded
objects c ∈ C such that their truncations τ≤kc ∈ C≤k are compact for all k – in case C = R-mod this picks
out the bounded pseudo-coherent objects, which in the Noetherian case are precisely the bounded coherent
complexes. Then, one sets R(C) := Ind Coh(C). Section 4 explains that this is functorial for functors of C
which preserve left t-bounded colimits and are (almost) left t-exact.

Definition 1.3.4. Suppose that C is a presentable ∞-category with coherent t-structure. Then, we define

CtTate := R(CSO(2))⊗k[[u]] k((u))

as k((u))-linear presentable ∞-category.

For instance, R(k-modSO(2)) ' k[[u]]-mod so that (k-mod)tTate ' k((u))-mod. Notice, however, that the
t-structures were only a tool to moderate the intermediate step (of taking invariants) and that final result
cannot carry an interesting t-structure. It has the pleasant property of giving the same answers as does
working with small categories, while having more evident functoriality.

The resulting form of our main result will then be:

Theorem 1.3.5. Suppose that X is an algebraic space almost of finite type over a characteristic-zero field k.
Then, the natural SO(2)-equivariant map

π : LX → XdR

described above induces an adjoint pair of equivalence of 2-periodic (=k((u))-linear) dg-categories

π∗ : QC!(LX)tTate ∼−→ QC!(XdR)⊗k k((u)) : π!.

where the right-hand side consists of Z/2-graded right crystals on X.

1.4. Localization theorems and philosophy. Perhaps more interesting than the Theorems themselves –
though we think that they are interesting – is the philosophy behind them. The Theorems will be deduced
from more general categorical “localization” theorems in the spirit of Atiyah-Bott Localization: Theorem 5.1.3
and Theorem 5.3.4. Ignoring all technical details, the proof of our Theorems (and, at this level of precision,
of the Theorem of Feigin-Tsygan) would go as follows:

(1) Suppose that S is a topological space with an action of G = SO(2). Let F ⊂ S denote the fixed point
locus for this action. If S satisfies reasonable finiteness conditions, then the Atiyah-Bott Localization
Theorem tells us that the map

C•(F )⊗k k((u)) −→ C•(S)Tate := C•(S)SO(2) ⊗k[[u]] k((u))

is an equivalence of k((u))-module complexes.
(2) Suppose that X = SpecR is a scheme, assumed affine for simplicity. Then,

RΓ(XS ,OXS ) = S ⊗R

is another (derived) commutative algebra, equipped with a map to R coming from the projection
S → pt. So, we can consider the derived version of the I-adic filtration along the “kernel” of
S ⊗R→ R. The upshot is a a filtration

F •(S ⊗R)
4
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such that the associated graded can be identifies with

griF
•(S ⊗R) ' Symi

R C̃•(S)⊗R LR

When this can be done equivariantly, (1) thus provides a “localization theorem” for each associated
graded piece of the filtration. In characteristic zero, it can be shown that this filtration actually
splits if S is a co-H-space. Based on this, it is reasonable to expect a localization theorem for the
completion of S ⊗R along this filtration. If X = SpecR, then SpecS ⊗R is the derived mapping
space XS := Map(S,X) (see Notation Notation 5.1.1).

We switch now to this geometric language, letting XS denote the derived mapping space and X̂S

its completion along constant maps (these notions will be discussed more fully in Sections Section 2
and Section 5). Then, what we would like to ask for is a relationship like

RΓ(X̂F , ÔXF )Tate ∼−→ RΓ(X̂S , ÔXS )Tate

under some assumptions on F . (Our proof will, roughly, go along these lines. Although the Theorem
of Feigin-Tsygan looks like an example of this sort of phenomenon, we do not prove it – the filtration
does not split in this case, so more work is required.)

(3) We will see, as in [P1, GR1], that QC! is very well adapted to studying formal completions by
“descent.” Thus, (2) will allow us to get categorical forms of the localization theorem – both in small
and large category (with t-structure) forms.

(4) Finally, what’s this got to do with loop spaces and connections? It turns out that we just have to
consider the above in the case of

F = ∅ ⊂ S1 = S

with the usual action of G = SO(2). We will explain in Section 2 why XdR is the right answer for

the completion X̂∅ = p̂t of the point along X.

1.5. Plan of the paper. We will spend the first few sections, Section 2, Section 3 and Section 4 and
gathering some convenient general tools that are well suited to our problem:

– In Section 2 we will discuss formal completions, and the analog of the I-adic filtration, in the derived
setting. One notable point is the observation that this filtration is rationally split in many cases,
which we observe is a special case of general results on Goodwillie towers due to Bauer and McCarthy.

– In Section 3 we discuss some generalities on Ind-coherent compelxes, or QC!(X) as we’ll call the
∞-category of such, taken from [P1,G1].

– In Section 4 we discuss some general constructions on large categories with t-structures. These are
implicit in many key constructions involving Ind-coherent complexes, and are used in our formulation
for “large categories” above. We also advertise that these ideas have been gainfully used in [BZNP].

Then, in Section 5 we will state our general “Localization Theorems” and sketch their proofs using these
tools. Finally, in Section 6 we provide a lower bound on how interesting the categorical results are – namely,
we’ll apply them to proving the decategorified Theorem 1.1.2.

1.6. Notation and Clarifications. We work throughout over a fixed field k of characteristic zero. All
schemes / algebraic spaces / etc. are assumed to be derived, quasi-compact and quasi-separated, and of
finite type over k unless explicitly stated otherwise. Similarly, the notation QC(X) or R-mod will refer to
the ∞-category of quasi-coherent complexes on X or the ∞-category of R-modules in spectra or in k-module
complexes. When we want to refer to the classical category, we will think of it as the heart of the t-structure,
e.g., QC(X)♥ or (R-mod)♥. We will use homological grading conventions (e.g., “homologically bounded
above” = “cohomologically bounded below” = “left t-bounded”)

1.7. Acknowledgements. The author wishes to warmly thank Jacob Lurie and Boris Tsygan for interesting
conversations on the subject of this note, and the CATS 4 organizers for the invitation to speak and for
soliciting this note. The author was supported by an NSF Graduate Fellowship and an NSF Postdoctoral
Fellowship.
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2. Derived completions and Koszul duality

2.1. Functor of points completion. We have the following “geometric” approach to completion via the
functor of points:

Definition 2.1.1. Suppose that π : X → Y is a map of derived algebraic spaces (not necessarily a closed

immersion). Then, we take as our functor of points definition of completion Ŷ the following:

Ŷ (R) :=

Compatible diagrams

SpecfpRred

��

// X

π

��
SpecR // Y


That is, an R-point of Ŷ consists of an R-point of Y together with a chosen factorization of its restriction

to Rred through X. The intuition is that Ŷ should be determined by Y and the deformation theory of π (not
necessarily π itself).

Remark 2.1.2. Consider first the case when π is a closed immersion so that the corresponding map of

underlying reduced schemes is a monomorphism. It follows that Ŷ → Y is a monomorphism – it consists of
those R-points of Y that set-theoretically factor through X, with the factorization now being unique if it
exists.

There is one further noteworthy special case: If π is a surjective closed immersion, then Ŷ → Y is an
isomorphism.

Remark 2.1.3. In the case Y = pt we get that an R-point of the completion along X → pt is just given
by X(Rred) – in other words p̂t = XdR. Furthermore, we can describe all other completions in our sense in
terms of de Rham space: One has a Cartesian diagram

Ŷ

��

// XdR

πdR

��
Y // YdR

.

2.2. Algebraic completion (and filtration). This subsection is not strictly needed, but provides interest-
ing motivation.

2.2.1. Suppose given a map R→ R′ of ordinary (discrete) algebras. In this case, we can take I to be the

kerenl of this homomorphism, and consider the I-adic filtration on R / the I-adic completion R̂ of R, and so
on. We can ask: what is the “derived” analog of this? There is an obvious complication: the notion of an
ideal, and worse of a power of an ideal, is no longer so simple.

It turns out that there is a good definition, it just happens to be a little complicated to formulate:

2.2.2. Suppose given a map R→ R′ of E∞-algebras. Even if we might not know what I should be, we do
know what I/I2 should be – this should be ΩLR′|R, a shift of the cotangent complex. This means that we

know what each of R/I and R/I2 should be: R/I should be R′; and, R/I2 should be the universl square
zero extension of R by ΩLR′|R in the sense of [L2].

Thinking about the formulation of a “square zero extension” in [L2], one can come up with a generalization:

Definition 2.2.3. Let CAlg/R′ denote the ∞-category of E∞-algebras with a map to R′. Let

· · · // Pn+1
//

++

Pn //

**

· · · // P1
//

  

P0

��
id

be the Goodwillie tower of the identity functor [L2, Chapter 7].
6
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Then, we define the completion

R̂ := lim←−
n

Pn(R)

with the filtration gotten from the stages Pn(R).

2.2.4. That is, {Pn} is a tower of functors

Pn : CAlg/R′ → CAlg/R′

that better and better approximate the identity via functors that can be thought of as “polynomial-of-degree-n
near R′.” For instance P0(R) = R′, while P1(R) is the universal square-zero extension, i.e., it fits into a fiber
square of E∞-algebras

P1(R)

��

// R′

η

��
R′

0
// R′ ⊕ LR′|R

where η is the universal derivation.

We can ask: How do we ever compute this thing? At least in characteristic zero, it is possible to do it
by using Koszul duality. We will begin by demonstrating this in one of the strangest, and most interesting
sounding, case:

2.2.5. Suppose that k → R is a connective, commutative dg-k-algebra. We will explain the following motto:

The derived de Rham complex C•dR(R) is the (derived) formal completion of k along R

We do not wish to go into the details of what the universal property of “formal completion” should be
in this setting. One can give a definition using the Goodwillie calculus, and make it suitably functorial
by an elaboration of the techniques used in [L2] to define the cotangent complex in terms of the “tangent
correspondence.” Instead, we’ll assume that there’s a reasonable notion of completion and figure out what
the completion of k along R should be.

The idea will be to replace k → R by a map which looks more like an ordinary closed immersion. First,
pick a quasi-free resolution R ' k[xS ] with some differential Q(xS) = · · · . Then, replace k by k ' k[xS , yS ]
where deg yS = deg xS − 1 (in homological grading) so that we can declare Q(xS) = −yS + · · · . Now our
map k → R has been replaced by a map which, ignoring differentials, just looks like

k[xS ][yS ] −→ k[xS ]

and this we know how to compute the completion of: it is just k[xS ][[yS ]]. So, k[xS ][[yS ]] equipped with the
induced differential Q(xS) = −yS + · · · is our candidate for the completion. But now, a moment’s thought
verifies that this is nothing but the completed de Rham algebra of the quasi-free resolution k[xS ]!

The procedure described, by taking a semi-free resolution and then making it look like a surjection can
be re-worded in fancier terms: We say that LR′|R is a Lie co-algebroid in R′-mod, so that we can take the
algebroid version of the Chevalley-Eilenberg cochains C•CE/R(LR′|R). This is a filtered, complete, E∞ algebra

whose associated graded is just the free E∞-R-algebra SymR LR′|R.

Remark 2.2.6. Given a map of commutative algebras, we can always forget that they are commutative.
Our abstract definition of completion makes sense for En algebras for any n, in particular for associative
algebras. General non-sense will tell us that the E∞ completion is the inverse limit of the En completions.
But we can ask: Is that all really necessary, or will completion commute with forgetting commutativity?

In general, the answer is no: If we consider the map k → R, then the E1-completion is just k while we
have seen that the E∞-completion is C•dR(R). However, if R→ R′ is a finitely presented map of connective
E∞-algebras which is a surjection on π0 – i.e., a finitely generated closed immersion – then we can show that
completion does commute with forgetting down to E1-algebras.

7
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2.2.7. In both cases, the conclusion of the previous Remark can be proven by explicitly identifying the
E1-compltion along our E∞ map. There is a similar description in terms of Koszul duality and unravelling it
we see that it is the Adams (or bar-cobar) completion

Tot
{

(R′)⊗R(•+1)
}

= Tot
{
R′

//
//R′ ⊗R R′oo · · ·

}
More simply the problem is visible at the bottom layer. We have that

LE1

R′|R = the augmentation ideal I ⊂ R′ ⊗R R′ and LE∞R′|R = I/I2

so that LE1

R′|R carries a filtration with associated graded pieces built from LE∞R′|R. But, in general, it need

not be complete with respect to this filtration. If SpecR′ → SpecR is a closed immersion, then it will be
complete.

The case of En-completions, n > 1, is then amenable to an inductive argument. Since the diagonal is a
closed immersion, one can check that the E∞ completion of a map of connective E∞-algebras agrees with the
En-completion for n ≥ 2. This admits a combinatorial description by taking iterated Adams towers. Finally,
combining with the results of Theorem 3.3.24 we can simultaneously prove the following two assertions:

Proposition 2.2.8. Suppose that R→ R′ is a finitely presented map of connective E∞-algebras.

(i) Then the En-completions R̂En stabilize for n ≥ 2. If the map is a closed immersion, then they
stabilize for n ≥ 1.

(ii) The E∞-completion R̂ agrees with global sections on the “geometric” completion. That is, if we

consider the induced map X = SpecR′ → Y = SpecR and let Ŷ denote the functor-of-points

completion, then RΓ(Ŷ ,OŶ ) ' R̂.

A warning: The filtrations do depend on n.

Again we remark on the intuition: For connective algebras, E2 is commutative enough so that π0R is an
ordinary commutative ring and “geometry” kicks in. Thus, completions for connective En-algebras n ≥ 2 are
geometric with the same functor of points.

Finally, we highlight a way in which this section fits into the philosophy of the rest of this paper: In the
proof of Theorem 5.1.3 we will take a Cech nerve, and then complete it level-wise. This is exactly to fix this
difference between E1 and E∞ completions.

2.3. Splitting the filtration by Adams operations.

2.3.1. In the case of the derived loop space LX, it is well-known that

– OLX = HH•(OX) admits a decreasing filtration (as OX -algebra), whose associated graded is closely
related to the cotangent complex LX of X;

– This filtration naturally splits rationally, giving rise to a “Hodge decomposition.” Furthermore, this
splitting can be accomplished by considering the actions of certain power operations on OLX .

We will need a variant of this that is both more general and weaker: it is weaker in that it considers only

the OX -module, rather than OX -algebra, structure); it is more general in that it holds not just for LX = XS1

but XS for any co-H-space (e.g., every suspension).

Proposition 2.3.2. Suppose that X is a derived algebraic space in characteristic zero. Then,

(i) A finite pointed space pt→ S gives rise to a map p : XS → X in derived schemes under X. This
gives rise to an OX-module p∗OXS functorially in pointed maps of S. More precisely, the above
determines a composite sequence of functors

Spacesfin∗
XS−→ DerSchX//X

p∗−→ QC(X)

If S is connected, then XS is a nil-thickening of X.

4Strictly speaking, that’s only finite type over a field. In the generality we can use the E∞ algebra analog of [HLP,

Corollary 4.7].↑
8
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(ii) There is a decreasing filtration on p∗OXS ∈ QC(X) functorial in pointed maps of S

p∗OXS = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · ·

whose associated graded pieces can be naturally identified with

griF
• ' Symi

(
LX/XS

)
' Symi

(
LX ⊗k C̃•(S)

)
where C̃•(S) denotes reduced k-linear chains on S. In other words, the above functor lifts to one in
a commutative diagram

Spacesfin∗
XS−→ DerSchX//X

p∗−→ Filt QC(X)

(iii) Suppose that S admits a co-H-space structure as pointed space (e.g., S is the suspension of a pointed
space). Then, the filtration of (ii) splits naturally and there is an equivalence of OX-modules

p∗OXS
∼−→ SymOX

(
LX ⊗ C̃•(S)

)
Indication of Proof.

(i) The only claim that we must verify is that XS is a nil-thickening of X when S is connected (and
non-empty, since it is pointed!). The claim is local on X, so that we may suppose X = SpecR and
XS = SpecS ⊗R. Now it is enough to observe thatπ0(S ⊗R) = π(S)⊗ π0R where the first (resp.,
second) use of ⊗ denote the tensoring of derived rings (resp., rings) over spaces (resp., sets).

(ii) This is the filtration corresponding to the Goodwillie Tower of the functor in (i). The identification
of the layers in the tower (“Goodwillie derivatives”) can be deduced as follows: First note that
the first functor S 7→ XS is excisive, so that the chain rule implies that the Goodwillie derivatives
are determined by that of the forgetful functor from augmented R-algebras to R-modules. It is
well-known that the first Goodwillie derivative of this forgetful functor is the cotangent complex LR
(e.g., this is the definition of LR in [L2]), and that the higher derivatives are given by taking smash
products and symmetric co-invariants from the first.5 For an exposition of a similar topic see [HH].

For the reader’s convenience, we also recall (again) a explicit description of the filtration in terms
of Koszul duality: First recall that by definition

MapDerSch(SpecA, (SpecR)S) = MapsSet(S,MapDerSch(SpecA,SpecR))

= MapsSet(S,MapDRng(R,A))

= MapDRng(R,AS)

= MapDRng(R⊗ S,A)

where AS = A ⊗k Ω•(S) with Ω•(S) denoting algebraic de Rham forms on the simplicial set S.
This is the usual description of the co-tensoring of DRng over sSet: since S is a finite simplicial
set, A⊗k Ω•(S) is a model for the mapping spectrum RHom(S,H(A)). While the co-tensoring by
spaces (A 7→ AS) was immediate from the viewpoint of commutative algebras, it turns out that the
tensoring (R 7→ R⊗ S) is better seen from the Koszul dual viewpoint of Lie co-algebras:

Recall that R⊗ S is an augmented commutative R-algebra. The relative cotangent complex

LR/R⊗S = LR⊗S/R
∣∣
R

[+1]

carries an R-linear Lie co-algebra structure, and there is a Koszul duality map of R-algebras

KD: C
coLie/R
• (LR/R⊗S) −→ R⊗ S

Furthermore, since formation of cotangent complexes preserves colimits of commutative algebras one
may identify the underlying complex

LR/R⊗S ' LR[+1]⊗k C̃•(S)

5This latter fact, for which we can’t find a precise reference, can be proved by combining a general description of the layers
in terms of cross effects, the fact that coproduct in commutative algebras is the smash product, and the computation of the

linear piece.↑
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One can then check that KD induces an equivalence on cotangent complexes and on reduced
parts (recall that S is connected), and is consequently an equivalence. Finally, the claim of the
Proposition follows from the above identification of LR/R⊗S by noting that the underlying R-module

of CcoLie/R(L ) is filtered with associated graded SymR(L [−1]): It must be filtered because the
Chevalley-Eilenberg differential includes an “extraneous” term, and passing to associated gradeds
for the filtrations turns off this term.

(iii) This is a general statement on splitting of the Goodwillie tower at a co-H-space. [BM, Theorem 1.1]
�

Remark 2.3.3. We will talk about Ind-coherent complexes below, but let us note that the previous
Proposition essentially explains why they will be convenient for us: If X is almost of finite presentation, then
LX will be almost perfect. Using the Postnikov filtration, we view LX as an inverse limit of bounded coherent
modules on X. Combined with the filtration in (ii) this tells us that that p∗OXS has extra structure beyond
that of an object of QC(X) – namely, it should be considered as a Pro-coherent complex.

Since we prefer algebras to coalgebras, we tend to prefer Ind-constructions to Pro-constructions. Now
taking the Grothendieck dual of the above we obtain that p∗ωXS should be naturally considered as an
Ind-coherent complex.

Remark 2.3.4. Surprisingly, the characteristic zero assumption in the previous Proposition is not entirely
essential. For (i) and (ii) it is not needed at all – while the Koszul duality description, as written, may have
depended on characteristic zero the result as stated is true over the sphere spectrum. For (iii), it is enough to
assume that the norm map is an equivalence for Σn-modules – this is true in characteristic zero, but also in
e.g., K(n)-local homotopy theory.

3. Ind-coherent complexes

3.1. The formal structure: the functors, base change, etc. We refer the reader to [P1,G1] for a more
detailed introduction, but in the meantime do want to give some flavor:

Definition 3.1.1. If X is a quasi-compact and quasi-separated algebraic space of finite type over k, we
have DCoh(X) ⊂ QC(X) the full subcategory of those complexes F that have bounded coherent homology
sheaves. Furthermore, we set

QC!(X) := Ind(DCoh(X)).

If f : X → Y is a morphism of such, we have two natural functors:

f ! : QC!(Y )→ QC!(X) and f∗ : QC!(X)→ QC!(Y ).

(As usual, ! is read as “shriek.”) This gives rise to a distinguished objects: ωX := π!k where π : X → Spec k
is the projection.

Remark 3.1.2. The notation QC! is motivated by the following. A better definition would have been to
make the above definition, in terms of Ind(DCoh(−)), only for affine schemes – and then to define QC!(X)
for general X by Kan extension from affines. And indeed, in general this is what we must do. It then becomes
a Theorem that QC! is compactly generated by DCoh in many favorable cases – these include quasi-compact
and quasi-separated algebraic spaces and geometric stacks in characteristic zero.

Remark 3.1.3. In the notation of the next section, QC!(X) = R(QC(X)) is the regularization.

Definition 3.1.4. QC!(X) is a module over the symmetric monoidal structure on QC(X): that is, the
symmetric monoidal category Perf(X) acts on DCoh(X) and similarly upon passing to Ind-completions. We
denote this action simply by “⊗′′.

There is also a symmetric monoidal structure on QC!(X) itself, coming from the exterior product and the
shriek pullback along the diagonal

F
!
⊗ G := ∆!(F � G )

having monoidal unit ωX .
The functor

ωX ⊗− : QC(X) −→ QC!(X)

is symmetric monoidal.
10
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The actual relations satisfied by the functors above are complicated, and best expressed in terms of a
suitable (∞, 2)-category of correspondences. This is discussed in [G1, Section 5]. We content ourselves with a
sketchier picture:

3.1.5. If f is proper, then f∗ is left adjoint to f !. If f is étale, then f ! is left adjoint to f∗. Given a Cartesian
square

X ′

f ′

��

p // X

f

��
Y ′

q
// Y

there is a base change equivalence

p∗(f
′)! ' f !q∗

3.2. Shriek integral transforms. One of the basic facts about QC! is that absolute tensor / functor
theorems still hold. (They do not, in general, over a base!)

Theorem 3.2.1 ([P1, Appendix B]). The shriek Fourier-Mukai transform provides an equivalence

Φ!
(−) : QC!(X × Y )

∼−→ FunL(QC!(X),QC!(Y ))

where

Φ!
K (F ) = (p2)∗

(
(p1)!(F )

!
⊗K

)
In the case X = Y , this is a monoidal equivalence – where QC!(X2) is equipped with the the monoidal

structure of shriek-convolution, and monoidal unit ∆∗ωX .

3.3. Descent (and completion) results. It turns out that QC! has quite a lot of descent, and is in many
ways more convenient than QC when working with formal completions.

Theorem 3.3.1 ([P1, Appendix A]). Suppose that π : X → Y is an h-cover (e.g., an fppf cover, or a proper
surjection). Let Cech(π) denote the Cech nerve of π as an augmented simplicial diagram. Then, the shriek
pullback induces an equivalence

QC!(Y )
∼−→ Tot

{
QC!(Cech(π))

}
In fact, even more is true. If π is a closed immersion but not surjective, we can still say what happens:

Theorem 3.3.2 ([P1, Section 5]). Suppose that π : X → Y is proper, |Z| its set-theoretic image, and X̂
the completion of X along |Z|. Let Cech(π) denote the Cech nerve of π. Then, the shriek pullback induces
equivalences

QC!
Z(X)

∼−→ QC!(X̂)
∼−→ Tot

{
QC!(Cech(π))

}
Remark 3.3.3. In [P1, Section 5] this is only stated with π a closed immersion. In fact, the same proof
holds.

Remark 3.3.4. The above Theorem also holds – with a similar proof – in case the map π is not representable,
but merely ind-finite (i.e., a suitable colimit of finite morphisms). The proto-typical example of this is the

projection π : X → p̂t = XdR. In this example, the terms of the Cech nerve are nothing but the terms of the
Cech nerve for X → pt completed along their diagonals

XdR
//Xoo

oo //
//X̂2

oo
oo
oo

//
//
// · · ·oo

oo
oo

oo

and this is the usual description of QC!(XdR) in terms of crystals on the infinitesimal groupoid.

3.4. Crystals. In this paper we take QC!(XdR) as a definition of “D-module,” RΓ(XdR, ωXdR
) as a definition

of “(de Rham) Borel-Moore chains,” etc. The curious reader is directed to [GR3] for a verification that this
is compatible with other classical definitions.

11
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4. Regularizing t-structures

The goal of this section is to recall some constructions having to do with ∞-categories with t-structure.
Constructions similar to what we call R appear in [FG, Section 22] and ideas similar to those exposed here
have also been worked out by J. Lurie in unpublished work. The present exposition, which appears also as an
Appendix in [BZNP], is a survey form of the Appendix to the author’s coming pre-print [P2].

4.1. Completions of t-structures. For the reader’s convenience, we recall several convenient conditions
and constructions with t-structures from [L2]:

Definition 4.1.1. Suppose C is a stable∞-category with t-structure. We say that the t-structure is compatible
with filtered colimits if C has all filtered colimits and C<0 is closed under filtered colimits in C.

Definition 4.1.2. Suppose C is a stable ∞-category with t-structure.

– We say that the t-structure is (weakly) left complete if the natural map

F −→ lim←−
n

τ<nF

is an equivalence for all F ∈ C (in particular, the inverse limit is required to exist).
We say that it is left complete if furthermore every tower in lim←−C<n comes from an object of C.

– We say that the t-structure is (weakly) right complete if the natural map

lim−→
n

τ≥nF −→ F

is an equivalence for all F ∈ C (in particular, the direct limit is required to exist).
We say that it is right complete if furthermore every diagram of objects in lim←−C>−n comes from

an object of C.

Remark 4.1.3. The previous definition is of course formally symmetric: a t-structure on C is left complete
iff the opposite t-structure on Cop is right complete. In practice there is however a substantial asymmetry:
We are generally interested in presentable categories, and the opposite of a presentable category is almost
never presentable. More practically, the categories that arise in algebraic geometry – at least for our purposes
– tend to be right-complete, but some interesting categories fail to be left-complete.

Remark 4.1.4. By [L2, 1.2.1.19], this distinction between the “(weakly)” and not variants disappears for
the notion of left complete (resp., right complete) provided that C has countable products (resp., coproducts),
and that countable products are right t-exact (resp., coproducts are left t-exact) up to a finite shift.

In particular, if C is presentable and the t-structure compatible with filtered colimits then “weakly left
complete” coincides with “left complete.”

Example 4.1.5. Suppose A ∈ Alg(k-mod). When can we equip A-mod with a (nice) t-structure? There
are two notable cases:

– If A is connective (i.e., A ∈ (k-mod)≥0), then A-mod carries an accessible t-structure which is left
and right complete. It is defined by letting the conservative forgetful functor θ : A-mod→ k-mod
be t-exact, i.e., (A-mod)>0 = θ−1(k-mod>0) and (A-mod)<0 = θ−1(k-mod<0). The heart of this
t-structure identifies with ordinary (discrete) modules over π0(A).

– On the hand if A ∈ (k-mod)≤0 then A-mod carries an accesible t-structure which is right complete
(but not left complete). It is defined by declaring (A-mod)<0 = θ−1(k-mod<0), while the connective
objects are harder to recognize – (A-mod)≥0 is the smallest full subcategory that contains the objects
A ⊗M for M ∈ (k-mod)≥0 iand is closed under colimits and extensions. It follows that θ is left
t-exact, while the free module functor A⊗− is t-exact. The heart of this t-structure can also be
identified with ordinary (discrete) modules over π0(A).

For an example of this second case, consider A = H∗(BS1, k) ' k[[u]] where u is in homological degree −2.
In this case, an A-module M is co-connective if and only if its underlying module is co-connective; and an
A-module M is connective if and only if k ⊗AM is connective. In particular:

– A ∈ (A-mod)♥;
– k[+n] ∈ (A-mod)≥0 if and only if n ≥ 1 (k itself is not connective!).

12
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– k((β)) is a non-zero object which is in (A-mod)>n for all n, so that the t-structure is not left complete.
– The map

M −→ RHomRHomA(k,k)(k, k ⊗AM)

identifies the right-hand term with τ≤0M . In other words, we are transferring over the t-structure
on modules over the connective algebra RHomA(k, k) = H∗(S

1, k).

4.2. Coherent and Noetherian t-structures. Assuming some extra “finiteness” conditions on the t-
structure, one has extra operations of regularization available in addition to completion.

Lemma 4.2.1. Suppose C is a stable ∞-category with t-structure that is compatible with filtered colimits.
For F ∈ C, the following conditions are equivalent

(i) τ<nF ∈ C<n is compact for all n ∈ Z;
(ii) MapC(F ,−) commutes with filtered colimits in C<n for all n ∈ Z (“commutes with uniformly

bounded above colimits”);
(iii) RHomC(F ,−) commutes with filtered colimits in C<n for all n ∈ Z.

Furthermore,

– Suppose in addition that F is assumed bounded above: F ∈ C<n. Then, the above are equivalent to:
F ∈ (C<n)c and its image under the inclusion i<n : C<n → C<m is compact for all m ≥ n;

– Suppose that C is right complete. If F is bounded above and satisfies the above equivalent conditions,
then it is also bounded below.

Definition 4.2.2. Say that F ∈ C is almost compact if F satisfies the equivalent conditions of the previous
Lemma. Say that F ∈ C is coherent if

(i) F is bounded above, i.e., F ∈ C<n for some n.
(ii) F satisfies the equivalent conditions of the previous Lemma.

(If C is right complete, then any such F is also bounded below by the previous Lemma.)

Define the full subcategory Ĉoh+(C) ⊂ C (resp., Coh(C) ⊂ C) to consist of all F ∈ C that are almost
compact (resp., coherent).6

Remark 4.2.3. Characterization (iii) of the previous Lemma makes clear that Ĉoh+(C) and Coh(C) are
stable subcategories. Notice that, in general, the the t-structure need not restrict to these subcategories.

We can impose the following more stringent conditions to eliminate this issue:

Lemma 4.2.4. Suppose C is a stable ∞-category with t-structure that is compatible with filtered colimits.
Then, the following conditions are equivalent:

(i) The t-structure on C restricts to one on Ĉoh+(C);

(ii) The truncation functors on C preserves Ĉoh+(C).
(iii) The inclusion i<0 : C<0 → C<1 preserves compact objects;
(iv) The loops functor Ω: C<0 → C<0 preserves compact objects;

In this case, Ĉoh+(C)♥ = Coh(C)♥ = (C♥)c.
These imply – and in case C is right complete, are equivalent to –

(v) The subcategory of compact-objects in the heart (C♥)c ⊂ C♥ is abelian;

Under the above hypotheses, we have:

Lemma 4.2.5. Suppose C is a stable ∞-category with t-structure that is compatible with filtered colimits,
right complete, and satisfies the equivalent conditions of Lemma 4.2.4. Then:

– Coh(C)♥ = Coh(C) ∩ C♥ = (C♥)c consists precisely of the compact (or “finitely presented”) objects
of C♥.

– F ∈ Ĉoh+(C) if and only if HnF ∈ Coh(C)♥ ⊂ C♥ and HnF = 0 for n� 0;
– F ∈ Coh(C) if and only if HnF ∈ Coh(C)♥ ⊂ C♥ and HnF = 0 for all but finitely many n.

6This notation is potentially confusing, but fortunately will not be used much in general: Ĉoh+(C) need not be the left

t-completion of Coh(C) in general.↑
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Finally, we come to a strengthening of the above:

Lemma 4.2.6. Suppose that C is a stable ∞-category with t-structure that is compatible with filtered colimits,
that is right complete and that satisfies any of the equivalent conditions of Lemma 4.2.4.

Then, the following conditions are equivalent:

(i) C<0 is compactly-generated as ∞-category (in particular, presentable);
(ii) C♥ is compactly-generated as ordinary category;

(iii) C♥ is a locally coherent abelian category. (Recall this means that the compact objects form an abelian
category, and that C♥ is compactly generated. In particular, it is Grothendieck.)

This brings us to the following definition (which the previous Lemmas give various equivalent formulations
and consequences of):

Definition 4.2.7. Suppose C is a stable ∞-category with t-structure. We say that the t-structure is coherent
if the following conditions are satisfied:

– The t-structure is compatible with filtered colimits;
– The t-structure is right complete;
– C♥ is a locally coherent abelian category.

4.3. Regular and complete t-structures.

Definition 4.3.1. Suppose C is a stable ∞-category with t-structure compatible with filtered colimits. We
have seen that C<0 → C<1, etc., preserves filtered colimits. We say that the t-structure is (left) regular if it is
coherent and the natural map

Funfiltered colimits(C,D) = lim←−
n

Funfiltered colimits((C<n, i<n),D)

is an equivalence for every category D admiting filtered colimits.

Proposition 4.3.2. Suppose that C is coherent. Then, C is regular if and only if C is compactly-generated
by Coh(C).

There is a universal regular ∞-category with t-structure mapping to C, and it is given by the formula

R(C)
def
= Ind (Coh(C)) −→ C

The functor R(C)→ C preserves colimits, is t-exact, and the induced functor R(C)<0 → C<0 is an equivalence.
The t-structure on R(C) is also coherent.

Proof. By hypothesis, C<0 is compactly generated with compact objects Coh(C)<0. The functors C<0 → C<1

preserve both filtered colimits and compact objects, so we see that

colimfiltered colimits
n C<n = Ind (colimn Coh(C)<n) = Ind (Coh(C))

In particular, the first colimit exists: This is the assertion that there is an ∞-category with the correct
universal property; and it is given by the desired formula.

Notice that the functor R(C)→ C preserves filtered colimits by construction, and finite colimits on compact
objects by inspection, so that it preserves colimits. Since both t-structures are compatible with filtered
colimits, and since

R(C)<0 = Ind(Coh(C)<0) R(C)>0 = Ind(Coh(C)>0)

by construction, we see that this functor is t-exact. It is evident that it induces an equivalence on co-connective
objects.

Let us verify that R(C) is coherent: The t-structure is compatible with filtered colimits, as R(C)<0 → R(C)
preserves filtered colimits by construction. It is right complete and satisfies the extra coherent condition,
since these both depend only on R(C)<0 ' C<0. �

Definition 4.3.3. Suppose C is a stable ∞-category with t-structure. We say that the t-structure is (left)
complete if the natural functor

C→ lim←−
n

(C<n, τ<n)

14
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is an equivalence.7

Proposition 4.3.4. Suppose that C is a stable ∞-category with t-structure. Then, there is a universal
complete ∞-category with t-structure mapping to C, and it is given by the formula

C −→ Ĉ = lim←−
n

C<n

This functor is t-exact, and the induced functor C<0 → Ĉ<0 is an equivalence.
If C is coherent, then the t-structure on C is also coherent.

Proof. See [L2, §1.2.1] for everything but the last sentence.

Let us verify that Ĉ is coherent if C is: The t-structure is compatible with filtered colimits since each

functor in the inverse limit is so, and the other properties depend only on Ĉ<0 ' C<0. �

The point of making these definitions is the following:

Definition 4.3.5.

(i) Let Coht denote the ∞-category whose objects are ∞-categories C with coherent t-structure; whose
1-morphisms are colimit preserving and t-exact functors; and whose higher morphisms are as in
Cat∞.

(ii) Let Regt ⊂ Coht denote the subcategory whose objects are ∞-categories C with regular t-structure.
(iii) Let Cpltt ⊂ Coht denote the subcategory whose objects are ∞-categories C with complete (and

coherent) t-structure.

Theorem 4.3.6. The composites

C 7→ R(C) : Cpltt ↪→ Coht −→ Regt

C 7→ Ĉ : Regt ↪→ Coht −→ Cpltt

are inverse equivalences of ∞-categories. (i.e., this is an example of a localization and a co-localization being
the same)

Proof. We can show that the two functors are adjoint. It is enough to check that the unit and co-unit are
equivalences. For instance if C ∈ Regt then we must check that

R(Ĉ) −→ C

is an equivalence. Since both are regular and the functor is left t-exact and preserves filtered colimits, it is
enough to note that it is an equivalence on co-connective objects, which we have seen. The argument for the
other adjoint is similar. �

4.4. Quasi-coherent and Ind-coherent complexes.

Proposition 4.4.1. Suppose that X is a geometric stack; or, that X is a quasi-compact and quasi-separated
algebraic space. Then, QC(X) is a stable presentable ∞-category with accessible t-structure. This t-structure
is both left and right complete. If X is Noetherian, then QC(X) is coherent.

Proof. See [L1] for the first two sentences of the Proposition. For the third, it is a classical statement that
every object of QC(X)♥ is a filtered colimit of its coherent subobjects. �

Example 4.4.2. Suppose A is a Noetherian ring. Then, A-mod carries a t-structure that is both left and
right complete in the strong sense. Meanwhile, the full subcategory DCohA ⊂ A-mod carries a t-structure
which is both left and right bounded. In particular, it is weakly left and right complete, though not strongly
so. This fully faithful exact embedding into a left (resp., right) complete category identifies the left (resp.,
right) completion of DCohA with full subcategories of A-mod:

– The left completion of DCohA identifies with D̂Coh+A, the full-subcategory of modules M with
Hi(M) coherent over H0(A) for all i and vanishing for i� 0;

7This is just a reformulation of the earlier definition!↑
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– The right completion of DCohA identifies with D̂Coh– A, the full-subcategory of modules M with
Hi(M) coherent over H0(A) for all i and vanishing for i� 0;

– The left completion of the right completion (equivalently the other way around) of DCohA identifies

with D̂Coh±A, the full sub-category of modules M with Hi(M) coherent over H0(A) for all i.

This provides an “application” of the formal symmetry of the definitions. Suppose that ω ∈ A-mod is a
dualizing complex. This means that ω has homologically bounded above coherent homology, finite injective
dimension, and the natural map A→ RHomA(ω, ω) is an equivalence. It follows that the induced duality
functor

D = RHomA(−, ω) : DCohAop −→ DCohA

is an equivalence and that it is left and right t-exact up to finite shifts (where the opposite category gets the
opposite t-structure). By formal nonsense, it induces an equivalence on left completion of right completions

D :
(

D̂Coh±A
)op
' D̂Coh±A

Proposition 4.4.3. Suppose that X is a geometric stack of finite type over a characteristic zero field k;
or, that X is a quasi-compact and quasi-separated algebraic space of finite type over a perfect field k. Then,
QC!(X) is a stable presentable ∞-category with accessible t-structure. This t-structure is coherent and regular.

Furthermore, the natural map

QC!(X)→ QC(X)

realizes QC!(X) as the regularization of QC(X), and QC(X) as the completion of QC!(X).

Proof. For the stacky case see [DG]: One uses a finite-length stratification by global quotient stacks to show
that X has finite cohomological dimension (this is where one uses characteristic zero); from this, we deduce

that QC!(X)c = DCoh(X). Then, one uses the stratification to show that QC!(X)♥ generates, reducing to
the statement about ordinary quasi-coherent sheaves being unions of their coherent subsheaves.

For the algebraic space case, see [BZNP] – in op.cit. it is shown that DCoh(X) compactly generates

QC!(X). �

Finally, we have the variants of this for XdR:

Proposition 4.4.4. Suppose that X is a quasi-compact and quasi-separated algebraic space of finite type
over a characteristic zero field k. Then, QC!(XdR) is left complete, right complete, and regular.

Proof. First notice that QC!(XdR) is compactly generated rather more generally by [DG, Theorem 8.1.1].
(Though to get the case of algebraic spaces we need to run a variant of that argument, using the existence of

scallop decompositions as in [L1]. c.f., the proof that DCoh compactly-generates QC! in this case given in
[BZNP].)

It remains to prove that the t-structure is left complete, right complete, compatible with filtered colimits,
and that the compact objects are preserved by the t-structure. Notice that all of these claims are étale local
since f ! = f∗ is t-exact for f an étale map. Thus, we may suppose that X is an affine scheme.

Hence we may pick a closed immersion X →M with M smooth and affine, so that

QC!(XdR) ' QC!
X(MdR) = fib

{
QC!(MdR)→ QC!(UdR)

}
.

where U = M \X. Then, formal non-sense shows that

QC!(XdR)c = QC!
X(MdR) ∩QC!(MdR)c

It is then straightforward to reduce to the analogous statements with X replaced by M . But now QC!(MdR)
identifies with right DM -modules, and DM is a regular Noetherian ring. This completes the proof. �

Remark 4.4.5. Note that if X is an Artin stack, even a reasonable one, then QC!(XdR) need not be regular.
By [DG, Theorem 8.1.1, 6.2.3] it will be compactly generated and (left) complete. But op.cit. Remark 8.1.2
observes that the compact objects will not, generally, be preserved by the truncation functors.
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4.5. Finite simplicial group actions. The Tate construction is complicated because it mixes a colimit
and a limit. In particular, standard techniques of “algebra” – e.g., module categories – are much better suited
to colimits than to limits. The key simplifying observation for us is that for G = SO(2) the formation of
SO(2) invariants behaves as if it were a colimit when restricted to homologically bounded above complexes:

4.5.1. When dealing with explicit chain complexes, it is easy to make sense of this: If we identify
(k-mod)SO(2) ' H∗(S

1, k)-mod ' k[B]-mod where B is in homological degree +1,8 then the invariants
functor is given on dg-k[B] modules by

(V, d) 7→ (V [[u]], d+Bu)

and if V is homologically bounded above then the map

(V [u], d+Bu) −→ (V [[u]], d+Bu)

is actually a bijection of underlying graded modules. The left hand-side looks a lot like a colimit (e.g., it
preserves filtered colimits, is compatible with tensor in a precise sense, etc.)!

We may codify this observation in the following Lemma:

Lemma 4.5.2. Suppose that G is a simplicial group, and that BG is equivalent to a simplicial set with
finitely many non-degenerate simplices in each degree. Suppose that (C,C>0) is a presentable ∞-category with
a t-structure that is compatible with filtered colimits, right complete, and such that C<0 is compactly generated
(e.g., C is coherent, or C = A-mod for a connective ring A). Then,

(−)G : CG −→ C

preserves uniformly left t-bounded filtered colimits.

The group G = SO(2) has one more convenient property – since G is connected, any G-action on an object
of a 1-category must be trivial. If a stable ∞-category C has a bounded t-structure, then objects of the
heart generate – so if G acts on C, then CG is generated by objects with canonically trivial G-action. This

observation is, for instance, a key step in showing that R(k-modSO(2)) ' k[[u]]-mod as mentioned in 1.3.2.
We can encode these sort of arguments in the following Lemmas and Proposition:

Lemma 4.5.3. Suppose that G is a connected simplicial group, and that BG is equivalent to a simplicial
set with finitely many non-degenerate simplices in each degree. Suppose that C is a stable ∞-category with a
t-structure and an action of G, and let θ : CG → C denote the natural functor. Then,

(i) CG carries a t-structure characterized by (CG)>0 = θ−1(C>0) and (CG)<0 = θ−1(C<0);
(ii) The functor θ is exact, and induces an equivalence (CG)♥ ' C♥.

(iii) If the t-structure on C is bounded (resp., compatible with filtered colimits, right complete, left complete,
coherent), then so is the one on CG.9

Lemma 4.5.4. Let G be as above. Suppose that C ∈ dgcatidm
k carries a bounded t-structure, and let G act

on it trivially. Then, the natural functor

C⊗Perf k Perf C∗(BG, k) −→ CG

is an equivalence.

As noted above, regularity is not preserved by the formation of invariants. We can ask if there are
G-invariants in the ∞-category Regt. The answer is yes, as explained by the following Proposition:

Proposition 4.5.5. Let G be as above.
Suppose that C ∈ (Coht)

G is an ∞-category with a G-action and a coherent t-structure. Then, R(CG)→
R(C) identifes R(CG) as invariants for the G action on R(C) in the ∞-category (Regt)

G. Furthermore,
there is a natural equivalence

Ind(Coh(C)G)
∼−→ R(CG)

8By k[B] we mean the free dg-commutative algebra, so that B2 = 0 for grading reasons.↑
9Note that this is not true for regular.↑
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Remark 4.5.6. Notice that combining Prop. 4.4.4 with one or both of Prop. 4.5.5 and Lemma 4.5.4 we can
deduce a few useful statements.

For instance, let C = DCoh(XdR) denote the compact objects of QC!(XdR) and equip it with the trivial
action of G = SO(2). By Prop. 4.4.4, C carries a bounded t-structure, so it follows from Lemma 4.5.4 that

DCoh(XdR)SO(2) ' DCoh(XdR)⊗k k[[u]]

and inverting u that

DCoh(XdR)Tate ' DCoh(XdR)⊗k k((u))

Furthermore, combining with Prop. 4.5.5 allows us to conclude that

R(QC!(XdR)SO(2) ' Ind(DCoh(XdR)SO(2) ' QC!(XdR)⊗k k[[u]]

and inverting u that

QC!(XdR)tTate ' QC!(XdR)⊗k k((u))

Analogously, applying Prop. 4.5.5 to C = QC!(LX) – and then inverting u – we can conclude that

QC!(LX)tTate ' Ind(DCoh(LX)Tate).

This shows that our “large category” Theorems are essentially equivalent to their “small category” variants.

4.6. t-Tate-equivalences and functoriality. For the remainder of this sectionG = SO(2)r, and C∗(BG, k)loc =
C∗(BG, k) denotes the localization inverting all homogeneous elements. The goal of this subsection is to
explain how to get actual answers, e.g., actual chain complexes, from the above formalism.

Lemma 4.6.1. Suppose that C,D ∈ Coht are categories with coherent t-structures, and that F : C→ D is a
functor which is left t-exact up to a shift, preserves finite limits and colimits, and which preserves uniformly
left t-bounded filtered colimits. Then,

(i) There is an induced functor R(F ) : R(C)→ R(D) which is colimit preserving and left t-exact up to
a shift, and fitting into the commutive diagram

R(C)

`d

��

R(F ) // R(D)

`c

��
C

F
// D

(ii) Let rc (resp., rd) be the right adjoint to `c (resp., `d). Then, there is a commutative diagram

C<∞

rd

��

F
// D<∞

rc

��
R(C)

R(F )
// R(D)

Definition 4.6.2. Suppose that C ∈ CohGt . We say that a morphism f ∈ CG is a t-Tate-equivalence if it
becomes an equivalence after applying the composite functor

CG
rc−→ R(CG) −→ CtTate.

Remark 4.6.3. It is easy to see from the definitions, and Lemma 4.6.1, that if F is a G-equivariant functor
satisfying the hypotheses of Lemma 4.6.1 then F tTate makes sense and preserves t-Tate-equivalences between
left t-bounded objects. Furthermore, both the formation of F 7→ R(F ) and F 7→ F tTate are compatible with
composition.

Suppose now that F : C→ D is G-equivariant functor between categories with G-action, and that we’d
like to understand some Tate approximation to F . Assume that C,D are both regular and that the G action
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on D is trivial. Then, there is a commutative diagram

CG<∞

F

��

// R(CG) //

R(F )

��

CtTate

F tTate

��
DG
<∞

//

(−)G ''

R(DG) // DtTate

C∗(BG)-mod(D) // C∗(BG)loc-mod(D)

So on homologically bounded above objects, R(F ) is nothing more than F combined with ordinary invariants
functor with its C∗(BG)-action; and F tTate analogously with the ordinary Tate homology.

5. Localization theorems

5.1. Formulation of the “Localization Theorem”.

Notation 5.1.1.

– To a (finite) space S, we can associate the (derived) algebraic space

XS def
= Map(S,X) XS(SpecR) = MapsSet(S,X(SpecR)).

This functor is representable by an algebraic space, when X is an algebraic space.

– The projection S → pt endows XS with a natural map from X, Xpt → XS . Define X̂S to be the
completion of XS along X:

X̂S(SpecR)
def
= XS ×(XS)dR

XdR = Commutative diagrams of the form SpecRred

��

//X

��
SpecR //XS

– More generally, the constructions S 7→ XS and S 7→ X̂S are contravariantly functorial in S.

5.1.2. The construction S 7→ X̂S behaves qualitatively differently in the following three cases:

– If S is non-empty, then X → XS is a closed-immersion. In this case, X̂S is a subfunctor of XS :

X̂S(SpecR) just consists of those components of XS(SpecR) which set-theoretically (as opposed to
scheme-theoretically) factor through the diagonal.

– If S = ∅, then XS = (XS)dR = pt. So, X̂S = XdR.
– If S is non-empty and connected, and X(Rred) is discrete (e.g., X a derived algebraic space), then

X → XS is set-theoretically a bijection. In this case, X̂S → XS is an equivalence.

Our main Localization Theorem will be:

Theorem 5.1.3 (“Localization Theorem for QC!(X̂−)”). Suppose that G = SO(2)r is a compact torus, that
S is a finite G-space, and that F ↪→ S is the inclusion of the fixed locus. The inclusion of fixed points gives
rise to a map p : XS → XF of derived schemes under X, and consequently to a map

p̂ : X̂S → X̂F

of their completions along X. The functors p̂∗ and p̂! are G-equivariant, and left t-exact up to a shift, and
give rise to adjoint equivalences

(p̂∗)
tTate : QC!(X̂S)tTate ↔ QC!(X̂F )tTate : (p̂!)tTate
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5.2. Reducing “loop spaces and connections” to the “Localization Theorem”. Let us explain how
to view Theorem 1.3.5 as a special case of Theorem 5.1.3:

Example 5.2.1. We can reformulate the map π of Theorem 1.3.5: Consider the (SO(2)-equivariant) inclusion

∅ ↪→ S1. It gives rise to a projection, under X, π : X̂S1 → X̂∅. From 5.1.2, we may identify X̂S1 ' X̂S1 = L̂X

and X̂∅ ' XdR. Under these identifications, this is equivalent to the map π described earlier.

Assuming Theorem 5.1.3, which we will give in the next subsection, we can of course complete the proof of
Theorem 1.3.5:

Proof of Theorem 1.3.5. Apply Theorem 1.3.5 to the inclusion ∅ ↪→ S1 of G = SO(2) fixed points.
To conclude it is enough to prove that

QC!(XdR)tTate ' QC!(XdR)((β))

which follows by Remark 4.5.6. �

Remark 5.2.2. We have thus recast our form of “loop spaces and connections” Theorem 1.3.5 as a special
case of the “Localization Theorem” Theorem 5.1.3, applied to the inclusion of SO(2) fixed points ∅ ↪→ S1.
Although Theorem 5.1.3 seems to strictly generalize the original Theorem 1.3.5 we are not aware of any other
examples that are as interesting.

5.3. Reduction to Localization for Dualizing Complexes. In order to prove Theorem 5.1.3, we will
reduce it to a Localization Theorem one category-level down. To do this, we need the following more algebraic

description of QC!(X̂S) making use of the good formal properties of QC!:

Proposition 5.3.1. Suppose S is a (finite) space, and let ΣS denote the un-reduced suspension of S. Then,

(i) The inclusion of cone points S0 = Σ∅ ↪→ ΣS gives rise to a projection p′ : X̂ΣS → X̂S0 → X2. Then,

(p′)∗ωX̂ΣS
∈ QC!(X2)

naturally lifts to an algebra object with respect to the shriek-convolution product
!◦ on QC!(X2). By

abuse of notation, call this algebra object ω
X̂ΣS

.10

(ii) The natural map c : X → X̂S induces an equivalence

c! : QC!(X̂S)
∼−→ (c!c∗)-mod QC!(X)

Furthermore, the monad (c!c∗) ∈ Alg(FunL(QC!(X),QC!(X))) identifies with ω
X̂ΣS

∈ Alg(QC!(X2))
under the the !-Fourier-Mukai equivalence Theorem 3.2.1.

Proof.

(i) Note that the ∞-category sSetS0/ of spaces under S0 = {+1,−1} is equipped with a monoidal
structure via wedge product:

(X,x−, x+) ∧ (Y, y−, y+) = ((X t Y )/(x+ ∼ y−), x−, y+)

There is a functor S 7→ ΣS from un-pointed spaces to co-A∞ monoids in this category: the
distinguished points are the two cone points of the suspension, and the co-monoid structure is by
“pinching map” ΣS → (ΣS) ∧ (ΣS). One can check that this structure gives rise to the requisite
algebra under convolution product.

(ii) (C.f. [P1, Section 5]) The Cech nerve of X → X̂S identifies with the result of applying X̂− to the
co-augmented co-simplicial space associated to the co-A∞ monoid ΣS above. To see this, note that

S 7→ X̂S takes finite colimits (under the initial object ∅) to finite limits (over X̂∅ = XdR). For

instance, at the level of 1-simplices this is the fact that X ×
X̂S

X = X̂ΣS .

We claim that c! admits a left adjoint c∗ compatible with base-change, and that it is monadic.
This should be regarded as a mild generalization of Theorem 3.3.2 where the map c is “ind-finite.”

10We do not believe that this abuse of notation is harmuful: This is the only place where it is naturally an algebra object!

The only potential ambiguity is in QC!(X̂2) = QC!
X(X2) versus QC!(X2), but that is a full subcategory.↑
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Indeed, the result can be found worded in this style in [GR4] – for the this generality is needed to
generalize the results of this note to X a stack, but for X an algebraic space we can get by with less:

In the case where S is non-empty andX is separated, we have that c is the completion of an ordinary
(locally) closed immersion. Thus, the existence of c! follows from the usual functoriality for QC! in
the (easier) quasi-affine case. Furthermore, the monadicity follows from the descent/completion
paradigm in Theorem 3.3.2.

Meanwhile in the case of S = ∅ we are studying the map X → XdR – and this is now the assertion
that crystals are monadic over their “right realization” i.e., the forgetful functor from crystals to
QC!(X). This is étale local on X, so that we may suppose that X is affine and embedded as a

closed subscheme of a smooth affine variety M . It is clear that M̂dR = XdR. Consider now the

map f : M̂ → M̂dR, both completions taken along X. We claim that M̂dR is actually the geometric
realization, in étale sheaves, of the Cech nerve of f – the realization identifies with the subfunctor of
those points which étale locally admit a factorization through f , so it is enough to show that any

ηred ∈ (M̂dR)(R) extends to a diagram

(SpecR)red

��

ηred // X

��
SpecR

η
// M

corresponding to an R-point of M̂ . But this follows by formal smoothness of M .
Using this and the completion-support paradigm of Theorem 3.3.2 we can show QC!(XdR) '

QC!
X(MdR) (“Kashiwara’s Lemma”), and thus construct c∗ and check the Barr-Beck conditions for

monadicity.

Continuing, the Beck-Chevalley condition [L2, Section 6.2.4] ensures that the monad is given by

the formal groupoid over X associated to X̂ΣS :

X // X̂ΣSoo
oo //

// · · ·oo
oo
oo

To conclude, apply the projection formula for QC!:

(p2 ◦ p)∗(p2 ◦ p)! = (p2)∗(p
′)∗

(
(p′)!(p1)!(−)

!
⊗ ω

X̂ΣS

)
= (p2)∗

(
(p1)!(−)

!
⊗ (p′)∗ωX̂ΣS

)
�

Remark 5.3.2. Explicit simplicial models for the structure in (i) above can be obtained by considering the
edgewise subdivision of the simplicial circle S1. In this form, this construction has figured prominently in the
geometric formulations of the decomposition results for Hochschild homology of commutative algebras via
power operations.

Example 5.3.3. Let’s spell out the above in our two cases of interest: S = ∅ and S = S1.

– Suppose S = ∅, so that we are interested in QC!(X̂S) = QC!(XdR), i.e., right D-modules on X. We

have ΣS = S0, so that n-simplices of the resulting simplicial diagram are X̂S0 = Xn
X̂ , etc. This is

the usual simplicial presentation of the de Rham stack, as the quotient of X by the infinitesimal
groupoid. Passing to QC!(−), we obtain

QC!(XdR) = Tot
{

QC!(X̂•+1)
}

= Tot
{

QC!
X(X•+1)

}
= ω

X̂S0 -mod QC!(X)

Note that X̂S0 is just the formal completion of X2 along the diagonal, and ω
X̂S0 may be realized as

the directed limit of ωXn where Xn runs through a suitable family of nilthickenings. In case X is

smooth, we can thus directly identify ω
X̂S0 and ωX ⊗OX DX as algebras in FunL(QC!(X),QC!(X)).

– Suppose S = S1, so that we are interested in QC!(X̂S) = QC!(L̂X). The 1-simplices of the resulting

simplicial diagram are X̂S2 , and the n-simplices are ̂XS2∨···∨S2 where the superscript is taken n-times.
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Passing to QC!(−), we obtain

QC!(L̂X) = Tot
{

QC!
(

̂XS2∧···∧S2
)}

= ω
X̂S2 -mod QC!(X)

– Let

φ : ω
X̂S2 −→ ω

X̂S0 = RΓX(ωX2)

denote the natural SO(2)-equivariant map in Alg(QC!(X2),
!◦). Under the above identifications,

the SO(2)-equivariant adjoint pair (π∗, π
!) of the Theorem may be identified with induction and

restriction along φ:

QC!(L̂X)

q!∼
��

i∗ //
QC!(XdR)

i!
oo

c!∼
��

ω
X̂S2 -mod(QC!(X))

Indφ //
ω
X̂S0 -mod(QC!(X))

Resφ

oo

Using these, one can deduce Theorem 5.1.3 from the following decategorified Localization Theorem, which
we will prove in the next subsection:

Theorem 5.3.4 (“Localization Theorem for ω
X̂−

”). Suppose G = SO(2)r is a compact torus, that S is a

finite G-space, and that F ↪→ S is the inclusion of the fixed locus. This gives rise to a map p̂ : X̂S → X̂F of
derived schemes under X and a natural map

α̂F,S : p∗ωX̂S −→ ω
X̂F
∈ QC!(X̂F )

If the pointed G-space S/F admits the structure of connected co-H-space in pointed G-spaces, then the
map α̂F,S induces an equivalence upon passing to Tate constructions.

Assuming Theorem 5.3.4, let us complete the proof of Theorem 5.1.3:

Proof of Theorem 5.1.3. We first show that

φTate : (ω
X̂ΣS

)Tate → (ω
X̂ΣF

)Tate

is an equivalence in Alg(QC!(X2)). Since the forgetful functor Alg(QC!(X2))→ QC!(X2) is conservative
and preserves limits (such as taking S1-invariants) and filtered colimits (such as passing from invariants to

Tate construction), it is enough to check that the analogous map in QC!(X2) is an equivalence. This map is

in fact pushed forward from QC!(X̂ΣF ), where it is an equivalence by applying Theorem 5.3.4 to ΣF ↪→ ΣS:
Note that (ΣS)/(ΣF ) ' S1 ∧ (S/F ) as pointed G-spaces; consequently, it admits a co-H-space structure
induced by the pinch map on S1.

In light of Prop. 4.5.5, it is now enough to show that

(p∗)
Tate : DCoh(X̂S)Tate −→ DCoh(X̂F )Tate

is an equivalence. Note that DCoh(X̂S)Tate (and similarly for XF ) is generated under cones, shifts, and
retracts by the images of objects of DCoh(X)♥ equipped with the trivial G-action. It thus suffices to show

that (p∗)
Tate is fully faithful on pushforwards along q : X → X̂S . That is, we must show that

RHom
QC!(X̂S)

(q∗F , q∗G )Tate −→ RHom
QC!(X̂F )

(p∗q∗F , p∗q∗G )Tate

is an equivalence for all F ,G ∈ DCohX. But we may identify this map with each of

RHomQC!(X)(F ,Φ!
ω
X̂ΣS

G )Tate −→ RHomQC!(X)(F ,Φ!
ω
X̂ΣF

G )Tate

RHomQC!(X2)(F � DG , ω
X̂ΣS

)Tate −→ RHomQC!(X2)(F � DG , ω
X̂ΣF

)Tate

RHomQC!(X2)(F�DG , (ω
X̂ΣS

)G)⊗C∗(BG)C
∗(BG)loc −→ RHomQC!(X2)(F�DG , (ω

X̂ΣF
)G)⊗C∗(BG)C

∗(BG)loc

Since F � DG is compact in QC!(X2), we can move the colimit inside – this completes the proof. �
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5.4. Proof of Localization for Dualizing Complexes. Let us record the following equivariant version
of Prop. 2.3.2. Note that (i) and (ii) are immediate from the functoriality considerations there, while (iii)
follows from the generality of the proof:

Proposition 5.4.1. Suppose that X is a derived algebraic space in characteristic zero, and that G is a
connected simplicial group which is equivalent to a finite space (e.g., G = {id} or G = SO(2)). Then,

(i) A finite, pointed, G-space pt→ S gives rise to a map p : XS → X in derived schemes under X with
G-action. This gives rise to a G-equivariant OX-module p∗OXS functorially in pointed G-maps of S.
More precisely, the above determines a composite sequence of functors

SpG∗
XS−→ DerSchGX//X

p∗−→ QC(X)G

(ii) There is a decreasing filtration on p∗OXS ∈ QC(X)G, functorial in pointed G-maps of S,

p∗OXS = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · ·
whose associated graded pieces can be naturally identified with

griF
• ' Symi

(
LX/XS

)
' Symi

(
LX ⊗k C̃•(S)

)
where C̃•(S) denotes reduced k-linear chains on S.

(iii) Suppose that S admits a co-H-space structure as pointed G-space (e.g., S is the suspension of a
pointed G-space). Then, the filtration of (ii) splits and there is an equivalence of G-equivariant
OX-modules

p∗OXS = OX ⊗R
∼−→ SymOX

(
LX ⊗ C̃•(S)

)
Up to duality, the point is now that ω

X̂S
and ω

X̂F
carry filtrations with the property that on each

associated graded piece we know that we have a Tate equivalence by Atiyah-Bott Localization. If Tate
equivalences were stable under arbitrary inverse limits, we would be done! Unfortunately, this is not true.
What is true is that if at each level of an inverse limit the cone on SO(2)-invariants is killed by uN , for a
fixed element u and integer N , then we might expect the limit to still be a Tate equivalence. That’s why
we’ll end up needing to use the last, and most subtle, part of the previous Proposition. We formalize this
observation about “being killed by uN” being preserved by many things:

Lemma 5.4.2. Let G = SO(2)r be a compact torus, and fix a non-zero homogeneous element u ∈ H∗(BG, k).
Consider the full-subcategory TorsN ⊂ (k-mod)G

(k-mod)G ⊃ TorsN = {V : The object V G ∈ C∗(BG, k)-mod is uN -torsion}
Then,

(i) TorsN is stable under arbitrary products;
(ii) TorsN is stable under retracts;

(iii) TorsN is stable under uniformly bounded above sums;
(iv) If V, V ′ ∈ (k-mod)G are both bounded above and V ∈ TorsN , then V ⊗ V ′ ∈ TorsN .

(v) If V ∈ TorsN is dualizable (i.e., k-perfect), then V
∨ ∈ TorsN .

Proof.

(i) Suppose hα is a null-homotopy of uN on (Vα)G for each α in some indexing set. Then,
∏
hα is a

null-homotopy of uN on ∏
α

(Vα)G '

(∏
α

Vα

)G
(ii) Obvious.

(iii) Suppose Vα ∈ (k-mod)G is a uniformly bounded above family, and that hα is a null-homotopy of uN

on (Vα)G for each α. Then, the natural map⊕
α

(Vα)G −→

(⊕
α

Vα

)G
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is an equivalence (c.f., Lemma 4.5.2) and ⊕hα gives the desired null-homotopy of uN on the sum.
(iv) It suffices to note that the natural map

V G ⊗kG (V ′)G → (V ⊗k V ′)G

is an equivalence under the boundedness assumptions (c.f., the discussion after Lemma 4.5.2). For
then, suppose that h is a null-homotopy of uN on V G; then h⊗ 1 is a null-homotopy of uN = uN ⊗ 1
on the tensor product.

(v) Since V and V
∨

are both k-perfect, they are bounded above. The duality datum between V and

V
∨

then induces a k[u]-linear duality datum between V G and (V
∨

)G. The result then follows, since

the dual morphism to uN on V G is uN on (V
∨

)G; a null-homotopy of the former gives rise to a
null-homotopy of the latter. �

Putting these facts together, we are ready to explain our decategorified Localization Theorem:

Proof of Theorem 5.3.4.

Reduction to F = pt: Consider the “big diagonal” i : X → X̂F induced by the projection F → pt. Since

i! : QC!(X̂F )→ QC!(X) is conservative and commutes with limits and colimits (c.f., the proof of Prop. 5.3.1)
it is enough to show that

i!α̂F,S : i!p∗ωX̂S −→ i!ω
X̂F
∈ QC!(X)

induces an equivalence upon passing to Tate constructions. Considering the Cartesian square

X̂S/F

p′

��

// X̂S

p̂
��

X
i
// X̂F

we see that base-change11 identifies i!α̂F,S with

α̂pt,S/F : (p′)∗ωX̂S/F −→ ωX

Thus we are reduced to proving the result for the inclusion F = pt ↪→ S, with S a connected co-H-space
in pointed G-spaces on which G acts without fixed points away from the base-point.

Converting to algebra: In particular, note that we are now in a situation where Prop. 2.3.2(iii) applies.
We must show that for all K ∈ DCoh(X) the natural map

RHomQC!(X)(K , ωX)←− RHomQC!(X)(K , ωXS ) = RHomQC!(X)(K , FR RHom⊗QC(X)(p∗OXS , ωX))

= RHomQC(X)(K ⊗OX p∗OXS , ωX)

becomes an equivalence after applying the Tate construction. Applying Prop. 2.3.2(iii) to S, we see that this
is equivalent to showing that

RHomQC(X)

(
K ⊗ Sym•≥1

OX

(
LX ⊗ C̃•(S)

)
, ωX

)
∈ CpxGk

becomes contractible after passing to Tate construction. (Recall that C̃•(S) denotes reduced chains.)

Completing the proof: The property for a complex V ∈ (k-mod)G to have contractible Tate construction
is not generally stable under infinitary operations, like those seemingly involved in forming the above complex

from C̃•(S). Fortunately in our case, we are in the stronger situation of Lemma 5.4.2 above: By the (proof
of the) Atiyah-Bott Localization Theorem, there exists an element u ∈ H∗(BG, k) and an N > 0 such that

C̃•(S) ∈ TorsN .
Working backwards towards our goal using the various assertions of Lemma 5.4.2:

11The reader who is concerned about base change with so many formal spaces in sight should be comforted: We only care

about the case where F , and thus S and S/F , is non-empty so that the pushforward along the inclusion determines a fully

faithful functor QC!(X̂F ) ↪→ QC!(XF ). So, we are free to work with “non-completed spaces” but “completed sheaves” (more

precisely, sheaves set-theoretically supported along the big diagonal).↑
24



Ind-coherent complexes on loop spaces and connections Anatoly Preygel

– By (v), or the usual cohomological form of Atiyah-Bott, C̃•(S) ∈ TorsN .

– By (iv), C̃•(S)⊗i ∈ TorsN for i ≥ 1.
– By (iv) again (or (iii)),

RHomQC(X)

(
K ⊗OX

(
LX ⊗ C̃•(S)

)⊗OX
i

, ωX

)
' RHomQC(X)

(
K ⊗OX L⊗OX

i

X ⊗k C̃•(S)⊗i, ωX

)
' RHomQC(X)

(
K ⊗OX L⊗OX

i

X ⊗k C̃•(S)⊗i, ωX

)
' RHomQC(X)

(
K ⊗OX L⊗OX

i

X , ωX

)
⊗k C̃•(S)⊗i ∈ TorsN

for i ≥ 1. Here we have implicitly used that C̃•(S) is perfect over k to dualize it out. Furthermore,
in concluding we used that K ⊗OX L⊗iX is almost perfect and ωX is bounded above to conclude that
the RHom was bounded above.

– By (ii),

RHomQC(X)

(
K ⊗OX Symi

(
LX ⊗ C̃•(S)

)
, ωX

)
∈ TorsN

for i ≥ 1, as it is a retract of the previous step (recall that we are in characteristic zero).
– By (i),

RHomQC(X) (K ⊗OX cone {OX → OXS} , ωX) ' RHomQC(X)

(
K ⊗OX Sym•≥1

(
LX ⊗ C̃•(S)

)
, ωX

)
=
∏
i≥1

RHomQC(X)

(
K ⊗OX Symi

(
LX ⊗ C̃•(S)

)
, ωX

)
∈ TorsN

We have thus proven that our given complex is in TorsN , from which it follows that it becomes contractible
after passing to Tate constructions. �

6. Applications: The Borel-Moore version of the Theorem of Feigin-Tsygan

6.1. D-modules and Borel-Moore chains. The following is presumably well-known, but we do not know
of a reference:

Theorem 6.1.1. Suppose that X is a derived algebraic space. Then, there exists a universal trace morphism12

tr : HH•(DCohXdR)SO(2) → CdR,BM• (X)

inducing an SO(2)-equivariant equivalence

HH•(DCohXdR) ' CdR,BM• (X)

where the right-hand side has the trivial SO(2)-action.

Proof. The key fact is that shriek integral transforms give an equivalence [G2]

Φ! : QC!((X2)dR)
∼−→ FunL(QC!(XdR),QC!(XdR))

under which the identify correspnods to Φ!
∆∗ωX

and the trace corresponds to

tr(Φ!
K ) = RΓ(XdR,∆

!K )

where RΓ(XdR,−) denotes the D-module pushforward to a point (not flat sections). In particular,

tr(idQC!(XdR)) = RΓ(XdR,∆
!∆∗ωXdR

) ' RΓ(L(XdR), ωL(XdR))

But L(XdR) = XdR. Done more systematically, as in Theorem 6.3.2 below, this gives an SO(2)-equivariant

equivalence HH•(DCohXdR) ' CdR,BM• (X). �

12The left-hand side is the coinvariants for the SO(2)-action on Hochschild chains, i.e,. it is the cyclic cochains↑
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Remark 6.1.2. If X is smooth, then DCohXdR contains a full-subcategory LocX of (de Rham) local
systems on X: i.e., those D-modules whose underlying OX -module is perfect. Using the Riemann-Hilbert
correspondence to identify LocX with topological local systems, one can construct an SO(2)-equivariant
identification HH•(LocX) ' C•sing(LX) – in particular, the SO(2)-action is non-trivial.

One might ask for a suitable form of the Atiyah-Bott Localization Theorem to hold for LX, and its fixed
locus X, allowing us to compate HP•(LocX) to C•sing(X)⊗k k((u)). If X is not simply connected, this is

quite unreasonable – e.g., if X = Gm then LocX = (Perf k)Z.

6.2. Detour – decategorified consequence. It’s time to verify that we can actualy get some handle on
the functoriality promised in Theorem 5.1.3.

Proposition 6.2.1. Suppose that F ∈ QC!(XdR)<∞. Then, the natural map

RΓ(LX, π!F )Tate −→ RΓ(XdR,F )Tate ' RΓ(XdR,F )⊗k k((u))

is an equivalence. In particular, taking F = ωXdR
we see that there is an equivalence

RΓ(LX,ωLX)Tate ∼−→ RΓ(XdR,F )⊗k k((u)) ' CdR,BM• (X)⊗k k((u))

Proof. Consider the commutative diagram

LX

""

π // XdR

p

��
pt

Notice that each of the functors p∗, π∗, and π! are of the type discussed in Remark 4.6.3. The natural
transformation

π∗π
!F −→ F

is a t-Tate-equivalence between left t-bounded objects by Theorem 5.1.3. Thus by Remark 4.6.3 the same is
true of

RΓ(X,π!F ) ' RΓ(XdR, π∗π
!F ) −→ RΓ(XdR,F ).

We may now take the ordinary Tate construction to complete the proof. �

6.3. DCoh and distributions on LX.

6.3.1. Theorem 6.1.1 together with the “induction” functor DCohX → DCohXdR induce an SO(2)-invariant
trace

HH•(DCohX) −→ HH•(DCohXdR)
∼−→ CdR,BM• (X)

We have the following

Theorem 6.3.2. Suppose that X is a derived scheme locally of finite type. Then, the SO(2)-equivariant
trace above induces an equivalence

HP• (DCohX)
φX' CdR,BM• (X)((u))

Proof. In order to compute HH•(DCohX), we follow a route similar to the above – only now we make it
more systematic. We will construct a functor of symmetric monoidal ∞-categories

ZDCohX : 1Bord
X(−)

−→ Corr′
QC!(−)−→ dgcat∞k

where:

– 1Bord denotes the ∞-category of (unoriented) 1-bordisms. Objects are finite sets, 1-morphisms are
(unoriented) cobordisms of finite sets, etc.

– Corr′ denotes the ∞-category of correspondences of derived schemes. In contrast to some variants,
the only higher morphisms we allow are equivalences of correspodences. The left hand functor sends
[n] 7→ Xn and a cobordism S between the finite sets δ0S and δ1S to the correspondence

Xδ0S ← XS → Xδ1S
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– dgcat∞k denotes the∞-category of presentable k-linear dg-categories and colimit preserving functors.

The right hand functor sends a derived scheme X to QC!(X) and a correspondence X0 ← X01 → X1

to (p1)∗(p0)! : QC!(X0)→ QC!(X1).

Upcoming work of Gaitsgory-Rozenblyum [GR2] will show that QC! has the desired functoriality for
correspondences and is symmetric monoidal. Assuming this for now, let us complete the proof: It follows
from the Cobordism Hypothesis that

ZDCohX

(
S1
)

: k-mod→ k-mod

is given by tensoring by HH•(DCohX). By the above description of Z, we see that

ZDCohX

(
S1
)

= RΓ(LX,ωLX ⊗k −) = RΓ(LX,ωLX)⊗k −

with the SO(2)-action derived from that on LX and the SO(2)-equivariance of ωLX : ωLX ∈ QC!(LX)SO(2).
The analogous construction for ZDCohXdR

factors canonically through the ordinary category Corr′var of
correspondence of varieties. In particular, it factors through the homotopy category of 1Bord, where the
SO(2)-action on S1 is necessarily trivial. There is a natural transformation ZDCohX → ZDCohXdR

and we

are studying its value on S1.
We unwind this: Let pdR : XdR → pt and πSO(2) : LX → XdR the natural maps. Then, the natural map

HH•(DCohX) = (pdR)∗
(
π∗π

!ωXdR

)
−→ (pdR)∗ωXdR

= CdR,BM• (X)

is SO(2)-equivariant for the trivial action on the right hand side. Prop. 6.2.1 proved that this induced an
equivalence on Tate constructions. �
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