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1. KAN VANISHING
Every algebraic geometer will recognize

Theorem 1.1 (Kodaira). Suppose X a compact Kahler variety, £ a positive line bundle. Then,
H9(X,QQ3mX & ) = 0 for all ¢ > 0 (and equivalently by Serre Duality: HY' (X, ZV) = 0 for all
q’ < dimX).

and in fact

Theorem 1.2 (Kodaira-Akizuki-Nakano). Suppose X a compact Kahler variety, £ a positive line bun-
dle. Then, HI(X,Q%" ® ) = HI' (X, 08" @ ZV) =0 for q+1>dimX, q' + ' < dim X.

From this complex analytic statement we can deduce

{“X compact Kahler, . positive”} GAgA {#X smooth projective C-scheme, .# ample”}

“hefschets Principle” {“X smooth projective k-scheme, k characteristic 0 field, .£ ample”}
Theorem 1.3 (Algebraic Kodaira-Akizuki-Nakano). Suppose X is a smooth projective k-scheme (k char.
0 field), £ ample line bundle. Then, H9(X,Q" ® .£) = HY'(X,Q%" @ V) =0 for q + 1 > dimX,
q’'+1' <dimX.
Let’s reflect on this a bit:
e The Good: This is a vanishing theorem in characteristic 0, whose statement is purely algebraic;
e The Bad: The proof indicated above was transcendental in nature (the proof over C uses Hodge
theory, with its elliptic operators and harmonic representatives).
e The Ugly: The statement can fail in characteristic p > 0: (Some Enriques surfaces in char. 2,
other examples. Raynaud and others.)
Deligne-Illusie-Raynaud tell us how to get around “The Bad” (and learn to live with “The Ugly”) and in fact

give a remarkably elementary proof of KAN vanishing. Before discussing it further, let’s define the other
part of the title:

2. DE RHAM coHOMOLOGY, HODGE-DERHAM SPECTRAL SEQUENCE

What do we mean by the de Rham cohomology of a scheme?

Definition 2.1. Suppose X is a smooth Y-scheme. Then, we have the de Rham complez Q;/Y:

i
i def L Ai i+1
v S N\Qxyy  and d: 0%,y — O

where d is the usual “exterior derivative.” Note that each Qg( /Y is an Ox-module, but d is only f~1Oy-linear.
The de Rham cohomology of X is defined to be the hypercohomology of QO v

; def .
Hag (X/Y) = H'(X, Q% v)

If you've never seen this before, this might seem strange. Here’s a bit of motivation:
1



STAGE Vanishing Theorems and the Hodge = de Rham Spectral Sequence = Anatoly Preygel

Ezample 2.2. e Suppose Y is a manifold, Q) the smooth, C-valued de Rham complex. By the
(smooth) Poincaré Lemma, C — QY is a quasi-isomorphism (i.e., the de Rham complex is a resolution
of the constant sheaf C). But now, Q% are modules over the fine sheaf of algebras O™, so that
they are themselves fine. Thus, H(Y,C) = H'(Y,Q%) = HY(T'(Y,Q%)). Someone who's only seen
this example might want to define the de Rham cohomology of X/Y as just Hi(_O_;( /Y). Here’s why
that’s not a good idea:

e Suppose X is a finite type smooth C-scheme, with X the associated analytic space, and Q%.. the
holomorphic de Rham complex. By the (holomorphic) Poincaré Lemma, C — Q%.. is a quasi-
isomorphism, and as before H'(X??,C) = H'(X®®, Q%.x). But, in this case the resolution need not
be acyclic so we can’t merely take H' o I'. In fact, by a theorem of Grothendieck the natural
map H(X, Q;(/C) — HY(X*®, Q%) = HY(X*®,C) under our hypotheses. So, H3y (X/C) is a purely
algebraic object which recovers the singular cohomology for smooth finite-type C schemes—our
definition is definitely reasonable.

Definition 2.3. We have the hypercohomology spectral sequence for Q% e
EPT = HI(X,QF ) = HPT9(X, Q% ) = HEg 4 (X/Y).
This is called the Hodge-de Rham spectral sequence.

Remark 2.4. Suppose that Y = Speck (k a field) and that X — Y = Speck is proper. Then, all terms on
page 1 of the spectral sequence are finite-dimensional k-vector spaces. Since each successive page involves
passing to subquotients, we obtain the following (well-defined) inequality

Y dimg HY(X,QF ) > dimy Hig (X/Y).
pPt+g=n

Moreover, we see that equality holds iff all differentials vanish, i.e., iff the spectral sequence degenerates
at page 1.

Ezample 2.5. Set k = C, X/C a finite-type C-scheme, and X®" the associated analytic space. The Dolbeault
Lemma shows that Q%.. — TotA** is a (filtered) quasi-isomorphism of complexes of sheaves where the
right hand complex is fine (and thus acyclic for I'(X, —)). This yields an isomorphism of spectral sequences

{Hq(X, Q;J(an) = ]I-]Ip“‘GI(X, Q_;(an)} = {Hq(]"(X, AP*)) = HPTA(T(X, Tot.A"'))}

But, Hodge theory (in particular existence of harmonic representatives) shows that Tot 5#7** — T'(X, Tot A**)
is a (filtered) quasi-isomorphism of complexes where the left hand complez has no non-zero differentials
(here, 7% is the bigraded space of harmonic forms). This induces an isomorphism of spectral sequences

{HI(T(X, AP*)) = HPFI(T(X, Tot A%®))} = {H'(A#*) = HPT9(Tot #7*°)} .

Since all differentials in Tot .77*:® are zero, certainly the same is true for its spectral sequence—which must
then degenerate at page 1.

Definition 2.6. Suppose C*® is a complex (of some sort). We say that C® is decomposable if it is quasi-
isomorphic to a complex with no non-zero differentials. (Applying Remark 2.4 we see that the hypercoho-
mology spectral sequence of any such complex degenerates—at least under suitable finiteness assumptions—
though certainly the converse does not necessarily hold.)

3. “THE BAD,” CONTD.

Work of Esnault and Viehweg showed that KAN-type vanishing results can be deduced directly from
degeneration of certain “Hodge-de Rham-like spectral sequences. There were proofs of degeneration of the
Hodge-de Rham spectral sequence (not necessarily the related sequences of Esnault-Viehweg) in characteristic
0 avoiding complex Hodge theory before Deligne-Illusie: c. 1984/5 via Faltings' work on the Hodge-Tate
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decomposition for Q,-étale cohomology.! Deligne-Illusie(-Raynaud) in fact accomplish two things (each one
involving a separate bit of characteristic p goodness!):

e They give an elementary argument proving degeneration (under certain hypotheses) in characteristic
P, and deduce degeneration in characteristic 0 by “standard arguments.”

e They give a direct simple argument (relying on being in char. p) for a modified version of KAN
vanishing in characteristic p, and deduce KAN vanishing in characteristic 0 by “standard arguments.”

The first bit of characteristic p goodness allows Deligne-Illusie to prove the following statement which
fairly easily implies an analog of Hodge-de Rham degeneration in characteristic p. Before stating it, let’s
recall some of the basics of Frobenius, and put up a diagram reminind us of where everything is: Suppose S
is an F,, scheme, and X an S-scheme. We have absolute Frobenius maps Fx : X — X and Fs : S — S. There
is also a relative Frobenius map F = Fx,s : X — X’ defined by the following commutative diagram with
cartesian square

Fx

(/5_\

X—=X —=X

NN

Now, we can state:

S——

Theorem 3.1. Let S be an F,-scheme, S a (flat) lifting of S over Z,/p%. Suppose that X is a smooth
S-scheme, and F: X — X' the relative Frobenius. Then, the following are equivalent:

(a) X' admits a flat lifts to(/deformation over) S;

(b) t<1F. Q5 /s is decomposable in D(X’) (Yes! It’s an element of D(X')! More on this in Sec-

tion 4.);
(c) T<pF.Q% /s is decomposable in D(X');
(d) There is a quasi-isomorphism in D(X’)
P ksl = T, F.O% s

i<p

Instead of proving it, I'll explain the bit of characteristic p goodness, justify the equivalence of the last two
points, and give a strong argument for expecting the first two points to be equivalent (leaving the rest for
Jay).

This turns out to be enough to recover limited characteristic p analogs of degeneration of the Hodge-de
Rham spectral sequence and KAN vanishing. To do so, we'd apply the Theorem in the case of

Ezample 3.2. Take S = Speck, with k a perfect field of char. p > 0. Then, S = Spec W5 (k) is a flat lifting
of k over Z/p? = W,(F,)). (In fact, it is the unique such up to isomorphism by general deformation theory
since Speck is affine and S/k is smooth.?) In this case, Fs : S — S is an isomorphism, and lifting X/S and
X’/S is equivalent.

We can deduce a characteristic p analog of KAN vanishing directly from the above theorem using an easy
argument that’s very dependent on the fact that we're in characteristic p:

Theorem 3.3 (Deligne-Illusie-Raynaud). Let S = Speck, for k a perfect field of characteristic p > 0,
and S = Spec Ws (k). Suppose X is a smooth projective k-scheme that admaits a lifting to Wh(k) = g,
and £ an ample invertible sheaf on X. Then, HI(X, Q) ® .¥) = Hq/(X,Q; ®ZLV) =0 for q+1 >
max{dim X,2dim X — p}, ¢’ + v/ < min{dim X, p}. (Here, q+q’' =1+ 1’ =dimX.)

1Still not algebraic: This approach uses p-adic analysis and the comparison theorem for étale and Betti cohomology.
2Space of lifts is a torsor for H! (Spec k, Ts,x) = 0.
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Proof. By Serre duality it suffices to prove the second part: that Hq/(X,Q’)"(, RZLY)=0for q +1' <
min{dim X, p}. By Serre vanishing, there is some n so that H9'(X, _Qg(/ ® Z%P") =0 for all q/ > 0 and
all r/. By Serre duality, HY(X, Q) ® £®P") =0 for all q < dimX and all r, and in particular whenever
g+ v < min{dim X, p}. (That back and forth made my head spin!)

Now, by induction on n (with .Z = $®*p"71), it suffices to prove that
Claim: Suppose that .# is a line bundle satisfying H(X, Q% ® .#P) = 0 whenever q+r < min{dim X, p}.
Then, HY(X, Q% ® .#) =0 whenever q + v < min{dim X, p}.
Proof of Claim:
Set A’ = .# ®o0, Ox, and consider the hypercohomology spectral sequence for .#’ ®o,, F.O%

HYX', A" @0,, F.QX ) = HY (X!, ' ®0,, F.O% )
Note that F*.#' = Fi.# = .#®7, so that the projection formula yields
M @0y, FOY o =Fu(F il @0, O ) = F.(M®P @4, QX ) for all r

Thus, the hypotheses of the claim imply that all terms on page 1 of the spectral sequence with q + r <
min{dim X, p} vanish, and so

0=H"(X',.4" ®0,, F.OQ% /) for n < min{dim X, p}.

Since .#"' is a line bundle, it is flat: So, .#’ ® — is an exact functor on the derived category, and in
particular it preserves quasi-isomorphism and behaves well with respect to truncation. By Theorem 3.1 we
have a quasi-isomorphism

P ok -l = T, F.O
i<p
and so for n < min{dim X, p} we have an isomorphism
0=H"(X',.#' ®o,, F.OQ% ;) = &H" (X', .4’ ®0,, Q% 1) = BiH" (X, 4 ®0, Q1) @ K,
where the last equality (with the map k — k given by Frobenius) follows by base-change (since X’ = X xS,
with S — S given by Fs). This proves the claim, and the theorem. O
4. CARTIER ISOMORPHISM
We begin with an observation. Suppose x € I'(U, F*Q;(/S) and a®k € I'(U, Ox-) are local sections. Then:
d((a®k) - x) =d(kaPx) = kpaPtd(x) + kaPd(x) = kaPd(x) = (a ® k) - d(x).

So, the exterior derivative on F*-O-;</s is Ox/-linear, and F*Q;(/S is a complex of Ox/-modules! Then, a
natural question is to ask what the cohomology sheaves of this complex are. This is answered by:

Theorem 4.1 (Cartier). Let S be an Fy,-scheme and X an S-scheme, F: X — X’ the relative Frobenius/S.
Then, there is a homomorphism of graded Ox.-algebras

Ct:Pak,s — PIH(F.Oxs)

uniquely characterized by C~1(F*(ds)) = sP~1ds for every section s of Qi/s. Moreover, this map is
an isomorphism if X/S is smooth.

Remark 4.2. This obviously implies the equivalence of (c) and (d) in Theorem 3.1. Another, slightly less
obvious but also useful, consequence is that F*Q’; /s is locally free.

Key Fact (which Jay will show next time): If F: X — X’ lifts to S. Then, one can construct a chain map

inducing C~! on cohomology.
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5. DECOMPOSING T<1F. Q)5 g AND LIFTINGS

(Notation: A an abelian category, C(A) the category of cochain complexes, D = D(A) the derived
category.) Question: Suppose C* = {C° N Cl} is a two-term complex in C(A). When is C*, as object of
D(A), decomposable?

Associated to C*® is the distinguished triangle

T<oC® — 1<1C* — H'C*[—1] — T<oll]
which we may canonically identify with the distinguished triangle
H°C® — C* — H!C*[-1] — H°C"*[1]
Via the identification
Homp (H°C® @ H!C*[—1], C*) = Homp (H°C®, C*) x Homp (H!C*[-1])

we see that the data of a map H°C® @ H!C®*[—1] — C*® inducing the identity on cohomology is the same as
an element of Homp (H!C*[—1], C*) mapping to id € Homp (H!C®[—1], H!C*[—1]) via the map in the above
distinguished triangle.

Definition 5.1. Suppose C*® in C(A) is concentrated in degrees 0,1. A decomposition (or decomposition
map) of C*® is an arrow H!C*[—1] — C*® of D(A) mapping to id € Homp (H!C®[-1], H'C*[—1]) via the natural
map above. (Foreshadowing definition: A morphism H!C®[—1] — C*® of C(A), that is a decomposition when
regarded as a morphism in D(A), is called a strict decomposition (map).)

The long exact sequence associated to the distinguished triangle includes the fragment

0 — Homp (H!C*[—1], H°C*) — Homp (H!C*[—1], C*) % Homp (H*C®[-1], H}C*[-1]) LA Homp (H!C*[—1], H°C®[1]).

So, we see that a decomposition map exists iff 5(id) = 0 € Homp (H*C*[—1], H°C*[1]) = ‘ Ext?(H'C®,H°C®) |

If a decomposition exists, then the set of all decompositions (a~!(id)) is a torsor for ker a = Homp (H!C*[-1], H°C®) =
Ext!(H!C*, HC*) |

What about TélF*Q;qs?

In this case, the obstruction lies in (using the Cartier isomorphism)

Ext?(H't<;F.Q% s, HO1<1F.Q% /) = Bxt?(H'F. Q% /5, HOF. Q% ex /s) = Bxt?(Q}, /5, Ox/) = H? (X', Tx/s),

and the decomposing maps form a torsor for
Ext! (H't<:1F.Q% /s, HOT<1 F. QY s) = HH X, Txr s).

Observation: Those looks like groups we recognize from deformation theory! Which groups?

The obstruction to lifting X’/S to S lies in Extz(Qi,/s, Ox:) = H?(X', Txs/s). These liftings are then a
torsor for Extl(Qi,/s, Ox/) = Hl(X',Tx//S). Then, the automorphism group of each lifting is isomorphic
to Hom(Qi,/s, Ox/) = HO(X’, Tx//s). This provides a first bit of evidence for (a)<(b) of Theorem 3.1. (In

fact, (a)<(b) is precisely the statement that the two obstructions always either both vanish or both don't.)

6. LOCAL IS EASIER THAN GLOBAL

Goal: We want to construct a bijection between the liftings and splittings. (In fact, by the Theorem
combined with the above “is a torsor for” computations, they should be in bijection.) Working globally
all at once is hard (even just constructing liftings is), and we have some intuition that this sort of ob-
struction/torsor /automorphism setup is often the result of a local-global transition (utter the words “gerbe,
torsor” here).

Pseudo-aside: If that s the case here, then it’ll be easier to construct a bijection using this than to do
it directly! Why? Here'’s an answer by analogy: Suppose .Z,.# are two line bundles (or more generally,
principle G-bundles). If we have a natural construction for a map of their global sections, then that should
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immediately give us a map of their sheaves of sections I'(—,.¢) — I'(—, .#). And conversely, having a map
of their sheaves of sections would certainly give us a map of global sections. But the latter is actually “easier”
to construct: Since sheaf-Hom is a sheaf, we can construct the map locally so long as we check that it’s
natural enough to glue. Then, we can take advantage of extra structure that might not be available globally
(e.g., trivializations).

Pessimism+Idea: For liftings the local-global nature is clear (they form a stack | Lift(X’; S/S) | on X4..).
For decompositions, something is wrong with our setup:First of all, there doesn’t seem to be a convenient
place to find H%(X’, Tx:/s) (automorphisms of a map?). Secondly, there’s no good way to glue maps in the
derived category and so no good way to set up a local-global problem. So, how do we formulate a local-global
problem whose global solutions on X’ are precisely the decompositions of T<;F, Q% /s?

While maps in the derived category don’t glue, there s a way to “glue” actual chain maps (with
suitable chain homotopies) to an element of the derived category (using Cech coverings). FEven better,
HnglF*Q;(/S = Q%(//s is locally free and thus locally projective: So, for U C X small enough (e.g., affine)
HomK(u)(Qi,/s, —) = HomD(u)(Qi//s, —): That is, every map out of it in the derived category (e.g., our

decomposition maps) is representable by an actual chain map (well-defined up to homotopy class). So, every
decomposing map will arise in this way: by gluing honest chain maps via homotopies. This lets us set up a
suitable local-global problem whose global objects will still be the decompositions of T<;F.Q% /s Take the

!
Zar

prestack on X

Strict decomposition maps Q}, — 11 F.Q¥,
SDec’(t<1F.Q} 5) : U’ — P P8 25ys|y, T TSRSy
Chain homotopies as morphisms

and define SDec(TglF*Q;(/S) to be the associated stack. One can verify (more-or-less by the above argu-

ment) that the isomorphism classes of global sections of SDec(t<:F.Q% /s) are in bijection with decompo-
sitions.



