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Abstract. Suppose (M, f) is an LG model. There are ways in which the 2-periodic dg-category of matrix

factorization MF(M, f) “wants to be” like (a 2-periodicization of) the dg-category Perf(crit(f)) of perfect

complexes on the critical locus, although this is not literally true. In this note we show an amusing sense in
which this is true: If (M, f) is a non-degenerate quadratic bundle over a scheme, then the statement holds at

the level of Hochschild cohomology (and almost Hochschild homology).

1. Introduction

Notation 1.0.1. For the duration of this document: X is a smooth scheme over a characteristic-zero field k,
Q→ X a vector bundle, and q : Q→ A1 is a non-degenerate quadratic form on Q. Since q is non-degenerate,
the critical locus crit(q) = X. We will be interested in the k-linear dg-category Perf(X) of perfect complexes
on X, and the k((β))-linear (homological deg β = −2) dg-category MF(Q, q) of matrix factorizations for q on
Q.

Our computation will be based on two results from [P]:

Theorem 1.0.2 ([P, Theorem 9.1.7(ii)]). Suppose Q is a metabolic quadratic bundle, i.e., there is a sub-vector
bundle L ⊂ Q such that L = L⊥. Then, tensor product with OL induces an equivalence

−⊗OX((β)) OL : Perf(X)((β)) ∼−→ MF(Q, q)

Theorem 1.0.3 ([P, Theorem 8.2.6]). Since 0 is the only critical value of q, there are k((β))-linear equivalences

HH•k((β)) (MF(Q, q)) = RHom⊗k((β))
MF(Q2,−q�q)

(
∆∗ωQ,∆∗ωQ

)
= RHom⊗kQC(Q2) (∆∗ωQ,∆∗ωQ)Tate

HHk((β))
• (MF(Q, q)) = RHom⊗k((β))

MF(Q2,−q�q)
(
∆∗OQ,∆∗ωQ

)
= RHom⊗kQC(Q2) (∆∗OQ,∆∗ωQ)Tate

where ∆ is the factorization of the diagoanl ∆: Q→ Q2 through the zero locus of the superpotential −q � q.

Using these, we will conclude

Theorem 1.0.4. There is an equivalence

HH•k((β)) (MF(Q, q)) = HH•k (Perf(X))⊗k k((β))

while the analogous statement for HH• requires taking coefficients in the (bimodule corresponding to) the line
bundle det Q

∨
[d]

HHk((β))
• (MF(Q, q)) = HHk

•

(
Perf(X),det Q

∨
)
⊗k k((β))

Remark 1.0.5. – The right hand sides admit evident descriptions via HKR. Having to twist one
of the two sides is to be expected from considerations of when Perf(X) and MF(Q, q) should be
Calabi-Yau: det Q

∨
[d] pulls back to the relative dualizing bundle ωQ/X .

– The identification of HH• also follows formally from a Corollary of [P, Theorem 9.1.7] included in
[P]: that MF(Q, q) is an invertible Perf(X)((β))⊗-module category.

– Outside of the “massive” (i.e., non-degenerate quadratic) case, the above Theorem rapidly ceases to
be true.1

1e.g., for x3 : A1 → A1 one can check that π∗HH•
k((β))(MF(A1, x3)) identifies with the 2-periodization of the Jacob ring

k[x]/(3x2) while π∗HH•
k(Perf(crit(x3))) is k[x]/x2 in degree 0 and k in all negative degrees.↑
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2. Proof

2.0.6. Equip Q ×X Q and Q2 with the superpotential −q � q, and let (Q ×X Q)0 and (Q2)0 denote the
respective fibers over zero. Consider the commutative diagram, with Cartesian squares

Q

∆ ##HHHHHHHHHH
e∆ // (Q×X Q)0

h0

��

i // Q×X Q

h

��

p // X

∆X

��
(Q2)0 j

// Q2 //
q

// X2

where ∆̃ is the indicated factorization of the relative diagonal ∆: Q→ Q×X Q through the zero-locus of the
superpotential.

2.0.7. Note that −q � q : Q ×X Q → A1 is a non-degenerate quadratic bundle on X: It is the hyperbolic
quadratic bundle normally denoted Q ⊥ Q. The diagonal ∆Q is a Lagrangian subspace, so that ∆̃∗OQ

generates the equivalence of Theorem 1.0.2. Let d = dimX Q be the fiber dimension of Q and ω′ =
D((det Q)[−d]) = ωX ⊗ det Q

∨
[d], so that the usual determinant formula gives ωQ = ω′|Q; by the projection

formula, ∆̃∗ωQ = ω′⊗OX
∆̃∗OQ. Since h0 is a base-change of ∆X and X is smooth, it is of finite Tor-dimension.

2.0.8. By Theorem 1.0.2, Theorem 1.0.3, and plenty of base-change

HH•k((β)) (MF(Q, q)) = RHom⊗k((β))
MF(Q2,−q�q)

(
(h0)∗∆̃∗ωQ, (h0)∗∆̃∗ωQ

)
= RHom⊗k((β))

MF(Q×XQ,−q�q)

(
(h0)∗(h0)∗∆̃∗ωQ, ∆̃∗ωQ

)
= RHom⊗k((β))

MF(Q×XQ,−q�q)

(
∆̃∗OQ ⊗O(Q×X Q)0

(h0)∗(h0)∗O(Q×XQ)0 , ∆̃∗ωQ

)
= RHom⊗k((β))

MF(Q×XQ,−q�q)

(
∆̃∗OQ ⊗OX

(ω′ ⊗OX
(∆X)∗(∆X)∗OX) , ∆̃∗OQ ⊗OX

ω′
)

= RHom⊗kPerf(X) (ω′ ⊗OX
(∆X)∗(∆X)∗OX , ω′)⊗k k((β))

= RHom⊗kPerf(X) ((∆X)∗(∆X)∗OX ,OX)⊗k k((β))

= HH•k (Perf(X))⊗k k((β))

2.0.9. And the analogous computation for HH•:

HHk((β))
• (MF(Q, q)) = RHom⊗k((β))

MF(Q2,−q�q)

(
(h0)∗∆̃∗OQ, (h0)∗∆̃∗ωQ

)
= RHom⊗k((β))

MF(Q×XQ,−q�q)

(
(h0)∗(h0)∗∆̃∗OQ, ∆̃∗ωQ

)
= RHom⊗k((β))

MF(Q×XQ,−q�q)

(
∆̃∗OQ ⊗O(Q×X Q)0

(h0)∗(h0)∗O(Q×XQ)0 , ∆̃∗ωQ

)
= RHom⊗k((β))

MF(Q×XQ,−q�q)

(
∆̃∗OQ ⊗OX

(∆X)∗(∆X)∗OX , ∆̃∗OQ ⊗OX
ω′
)

= RHom⊗kPerf(X) ((∆X)∗(∆X)∗OX , ω′)⊗k k((β))

= RHom⊗kPerf(X)

(
(∆X)∗OX , (∆X)∗

(
ωX ⊗ det Q

∨
[d]
))
⊗k k((β))

= HHk
•

(
Perf(X),det Q

∨
[d]
)
⊗k k((β))
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