KOSZUL FUN

ANATOLY PREYGEL JULY 21, 2010

1. *p*-local Pontryagin duality

1.1. Setup.

1.1.1. Setup: R a Noetherian regular local ring, \mathfrak{m} maximal ideal, $k = R/\mathfrak{m}$. Choose $f_1, \ldots, f_r \in \mathfrak{m}$ a minimal set of generators (i.e., their images are a k-basis for $\mathfrak{m}/\mathfrak{m}^2$).

1.1.2. Set

$$\mathscr{E} = \operatorname{RHom}_R(k, k)$$

Then, ${\mathscr E}$ is an associative (dg) R-algebra, and k is a left ${\mathscr E}\text{-module}.$

1.1.3. Set

$$k^{\vee} = \operatorname{RHom}_R(k, R)$$

It is a right \mathscr{E} -module, and our goal will be to compute the R-module

$$k^{\vee} \stackrel{{}_{\sim}}{\otimes}_{\mathscr{E}} k$$

1.1.4. Recall the Koszul complex for $k = R/\mathfrak{m}$ over R:

$$K = R[\epsilon_1, \dots, \epsilon_r]$$
 $|\epsilon_i| = 1, d\epsilon_i = f_i$

Or more verbosely (but not describing the differential)

$$K_{\bullet} = \left[\underbrace{\underbrace{R \cdot \epsilon_1 \wedge \dots \wedge \epsilon_r}_{\text{deg. }r} \longrightarrow \dots \longrightarrow \bigoplus_{1 \le i < j \le d} R \cdot \epsilon_i \wedge \epsilon_j \longrightarrow \bigoplus_{i=1}^d R \cdot \epsilon_i \longrightarrow \underbrace{R \cdot 1}_{\text{deg. }0}\right]$$

The map $K \to K/(f_1, \ldots, f_r) = k, 1 \mapsto 1$, is a quasi-isomorphism. (Pf: Induction on "d", regular sequence, ...)

1.1.5. The "Hodge star" makes the Koszul complex K self-dual up to a degree shift: That is, *u is characterized by $u \wedge *u = \epsilon_1 \wedge \cdots \wedge \epsilon_r$. It consists of free R-modules so that

$$\operatorname{RHom}_{R}(K,R) = \operatorname{Hom}_{R}(K,R) = \left[\underbrace{\underbrace{R \cdot 1^{\vee}}_{\operatorname{deg. 0}} \longrightarrow \cdots \longrightarrow \underbrace{R \cdot (\epsilon_{1} \wedge \cdots \wedge \epsilon_{r})^{\vee}}_{\operatorname{deg. -r}}_{\operatorname{deg. -r}}\right]_{\operatorname{deg. -r}} \\ \simeq \left[\underbrace{\underbrace{R \cdot *1}_{\operatorname{deg. 0}} \longrightarrow \cdots \longrightarrow \underbrace{R \cdot *(\epsilon_{1} \wedge \cdots \wedge \epsilon_{r})}_{\operatorname{deg. -r}}_{\operatorname{deg. -r}}\right] = K[r].$$

Consequently $k^{\vee} = k[r]$.

1.1.6. In particular, k[r] (and so k) inherits a right \mathscr{E} -module structure from that of k^{\vee} . (Note that this, at least a priori, depends on the choice of f_1, \ldots, f_r .) This lets us re-phrase our goal as computing

$$k \overset{\scriptscriptstyle L}{\otimes}_{\mathscr{E}} k \left(\simeq (k^{\vee} \overset{\scriptscriptstyle L}{\otimes}_{\mathscr{E}} k) [-r] \right)$$

Koszul Fun

Example 1.1.7. Set $R = \mathbb{Z}_{(p)}$, $\mathfrak{m} = p\mathbb{Z}_{(p)}$, $k = \mathbb{F}_p$; r = 1, and we can take $f_1 = p$. With the above identifications, we will show that $k \bigotimes_{\mathscr{E}} k \simeq \mathbb{Q}_{(p)}/\mathbb{Z}_{(p)}$ The natural "evaluation" map

$$k \overset{L}{\otimes}_{\mathscr{E}} k \simeq (k^{\vee} \overset{L}{\otimes}_{\mathscr{E}} k)[-1] = (\operatorname{RHom}_{R}(k, R) \overset{L}{\otimes}_{\mathscr{E}} R)[-1] \xrightarrow{\operatorname{ev}} R[-1]$$

will correspond to the "boundary map" $\mathbb{Q}_{(p)}/\mathbb{Z}_{(p)} \to \mathbb{Z}_{(p)}[-1]$ associated to the exact triangle

$$\mathbb{Z}_{(p)} \to \mathbb{Q}_{(p)} \to \mathbb{Q}_{(p)}/\mathbb{Z}_{(p)}$$

1.2. Explicit Computation for $R = \mathbb{Z}_{(p)}$.

1.2.1. It might be illustrative to do the computation of the above example explicitly. We'll give some elements names:

$$K = \left[R \cdot a \xrightarrow{p} R \cdot 1 \right]$$

(and using the magical sign rule)

$$K^{\scriptscriptstyle \vee} = \left[R \cdot 1^{\scriptscriptstyle \vee} \xrightarrow{-p} R \cdot a^{\scriptscriptstyle \vee} \right]$$

As R-complex,

$$\mathscr{E} = K \otimes_R K^{\vee}$$

is spanned by $a^{\vee} \otimes 1$ in degree -1, $a^{\vee} \otimes a$ and $1^{\vee} \otimes 1$ in degree 0, and $1^{\vee} \otimes a$ in degree 1. (With differentials determined by the tensor product rules). The dg algebra structure is given simply by "evaluation": $(v \otimes \lambda) \cdot (v' \otimes \lambda') = \lambda(v')(v \otimes \lambda')$. (Good thing *R* has no differential!)

1.2.2. I think I even got the signs right to, e.g., make \mathscr{E} a dga. For instance,

$$d(1) = d(1 \otimes 1^{\vee} + a \otimes a^{\vee}) = -p(1 \otimes a^{\vee}) + p(1 \otimes a^{\vee}) = 0$$

Even trickier, set $\alpha = v \otimes \lambda$ and $\beta = v' \otimes \lambda'$. Then,

$$d(\alpha \cdot \beta) = \lambda(v')d(v \otimes \lambda') = \lambda(v')\left(dv \otimes \lambda' + (-1)^{|v|}v \otimes d(\lambda')\right).$$

$$d(\alpha) \cdot \beta = \underbrace{\lambda(v')(dv \otimes \lambda')}_{\text{if } |v'| = -|\lambda|} + (-1)^{|v|}\underbrace{(d\lambda)(v')(v \otimes \lambda')}_{\text{if } |v'| = 1 - |\lambda|}$$

$$\alpha \cdot d(\beta) = \underbrace{\lambda(dv')(v \otimes \lambda')}_{\text{if } |v'| = 1 - |\lambda|} + (-1)^{|v'|}\underbrace{\lambda(v')(v \otimes d\lambda')}_{\text{if } |v'| = -|\lambda|}$$

So,

$$d(\alpha \cdot \beta) = d(\alpha) \cdot \beta + (-1)^{|\alpha|} \alpha \cdot d(\beta)$$

= $d(\alpha) \cdot \beta + (-1)^{|v|+|\lambda|} \alpha \cdot d(\beta)$
= $\lambda(v') \left(dv \otimes \lambda' + (-1)^{|v|+|\lambda|+|v'|} (v \otimes d\lambda') \right)$
+ $(-1)^{|v|} (v \otimes \lambda') \left((d\lambda)(v') + (-1)^{|\lambda|} \lambda(dv') \right)$

Since $\lambda(v') = 0$ unless $|\lambda| + |v'| = 0$, the first term is precisely $d(\alpha \cdot \beta)$. Meanwhile, since R is in a single degree

$$0 = d(\lambda(v')) = (d\lambda)(v') + (-1)^{|\lambda|}\lambda(dv').$$

(This was the reason for the "magical sign rule," forcing $d(1^{\vee})(a) = -1^{\vee}(da) = -p$.)

1.2.3. We can work with the algebra structure on \mathscr{E} , and the \mathscr{E} -module structure on K, via "matrices." Namely, the following identifications itertwine the products and module structures

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \longrightarrow x(a \otimes a^{\vee}) + y(a \otimes 1^{\vee}) + z(1 \otimes a^{\vee}) + w(1 \otimes 1^{\vee})$$

and

$$\binom{r}{s} \longrightarrow r \cdot a + s \cdot 1$$

Koszul Fun

1.2.4. Now, let's resolve K as left \mathscr{E} -module: There's a surjection $\mathscr{E} \twoheadrightarrow K$, $\alpha \mapsto \alpha \cdot 1$. In matrices this is

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \longrightarrow \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} y \\ w \end{pmatrix}$$

so the kernel of the surjection consists of matrices whose second column is zero (i.e., no $a \otimes 1^{\vee}$ or $1 \otimes 1^{\vee}$ component).

Let $t = 1 \otimes a^{\vee}$, and consider right multiplication $\cdot t \colon \mathscr{E}[1] \to \mathscr{E}$. Then, $\operatorname{im}(\cdot t) = \operatorname{ker}(\cdot t)$ is also the matrices with second column zero. In other words,

$$\operatorname{Tot}\left[\cdots \xrightarrow{\cdot t} \mathscr{E}[3] \xrightarrow{\cdot t} \mathscr{E}[2] \xrightarrow{\cdot t} \mathscr{E}[1] \xrightarrow{\cdot t} \mathscr{E}\right] \to K$$

is a free resolution of K.

1.2.5. We use the previous resolution to compute $K^{\vee} \overset{L}{\otimes}_{\mathscr{E}} K$:

. . .

$$K^{\vee} \overset{L}{\otimes}_{\mathscr{E}} K = \operatorname{Tot} \left[\cdots \xrightarrow{\cdot t} K^{\vee} \xrightarrow{\cdot t} K^{\vee} \xrightarrow{\cdot t} K^{\vee} \right].$$

The right action of $t = 1 \otimes a^{\vee}$ on K^{\vee} is easy to compute: $(1^{\vee}) \cdot t = a^{\vee}$ while $(a^{\vee}) \cdot t = 0$. The double complex we're totalizing looks like

$$\begin{array}{c} R \cdot 1^{\vee} & & \\ & & \downarrow^{-p} \\ R \cdot 1^{\vee} \xrightarrow{=} R \cdot a^{\vee} \\ & \downarrow^{-p} \\ R \cdot 1^{\vee} \xrightarrow{=} R \cdot a^{\vee} \\ & \downarrow^{-p} \\ R \cdot a^{\vee} \end{array}$$

with all the $R \cdot 1^{\vee}$ terms in total degree 0, and all the $R \cdot a^{\vee}$ in total degree -1. In other words, its totalization is the 2-term complex

$$\overbrace{i\geq 0}^{\text{deg. 0}} R \xrightarrow{d} \overbrace{i\geq 0}^{\text{deg. -1}} R$$

where

$$d(x_0, x_1, x_2, \cdots) = (x_1 - px_0, x_2 - px_1, x_3 - px_2, \cdots).$$

1.2.6. There should be some sort of standard telescope-type Lemma that allows us to immediately say that the above complex is the hofiber of

$$R \to \varinjlim \left\{ R \xrightarrow{p} R \xrightarrow{p} R \xrightarrow{p} R \xrightarrow{p} R \xrightarrow{p} \cdots \right\}$$
$$\mathbb{Q}_{(p)} = \varinjlim \left\{ R \xrightarrow{p} R \xrightarrow{p} R \xrightarrow{p} R \xrightarrow{p} \cdots \right\}$$

Since

this will be the hofiber of
$$\mathbb{Z}_{(p)} \to \mathbb{Q}_{(p)}$$
, i.e., $\mathbb{Q}_{(p)}/\mathbb{Z}_{(p)}[1]$. So, $k^{\vee} \overset{L}{\otimes}_{\mathscr{E}} k \simeq \mathbb{Q}_{(p)}/\mathbb{Z}_{(p)}[1]$ and $k \overset{L}{\otimes}_{\mathscr{E}} k \simeq \mathbb{Q}_{(p)}/\mathbb{Z}_{(p)}[1]$ as claimed!

1.2.7. En lieu of thinking about the above standard Lemma, we can just explicitly write down a quasiisomorphism. Consider

$$\begin{array}{c} \bigoplus_{i\geq 0} R \xrightarrow{x_0} \mathbb{Z}_p \\ \downarrow \\ \downarrow \\ \bigoplus_{i\geq 0} R \xrightarrow{\Phi} \mathbb{Q}_p \end{array}$$

$$\Phi(y_0, y_1, \ldots) = -\sum_{i \ge 0} \frac{1}{p^{i+1}} y_i$$

is concocted so that the diagram commutes. We will be done if we can show that this is a quasi-isomorphism.

Filter the LHS by declaring F_N to be the subcomplex where both direct sums are over $0 \leq i < N$; filter the RHS by declaring F_N to be $\mathbb{Z}_p \to 1/p^N \mathbb{Z}_p$. We verify that x_0 and Φ are compatible with filtrations, so it is enough to prove that this is a quasi-isomorphism on each filtered piece. On each filtered piece, writing down matrices verifies that both differentials are injective, have cokernels isomorphic to \mathbb{Z}/p^N , and the map on cokernels is an isomorphism.

1.3. Conceptual computation.

1.3.1. The explicit computation of the previous section can of course be made to work in general. Instead, we give a more conceptual reformulation.

1.3.2. We may regard k as an R- \mathscr{E}^{op} bimodule (i.e., a left R-module and right \mathscr{E} -module compatibly). It therefore determines an adjoint pair

 $\mathcal{L}: \mathscr{E}^{\mathrm{op}}\operatorname{-mod}_{\checkmark} \xrightarrow{} R\operatorname{-mod}: \mathfrak{R}$

$$\mathcal{L}(\mathscr{F}) = \mathscr{F} \overset{\scriptscriptstyle L}{\otimes}_{\mathscr{E}} k$$
 and $\mathcal{R}(M) = \operatorname{RHom}_R(k, M).$

The functor \mathcal{L} is essentially characterized by $\mathcal{L}(\mathscr{E}) = k$ and preserving colimits. The Koszul complex of k demonstrates that it is compact ("small"), so \mathcal{R} also preserves arbitrary colimits. So understanding $\mathcal{R}(M)$ (resp., $\mathcal{L}(\mathcal{R}(M))$) for arbitrary $M \in R$ -mod reduces (via colimits) to computing $\mathcal{R}(R)$ (resp., $\mathcal{L}(\mathcal{R}(R))$). Note that

$$\mathcal{L}(\mathcal{R}(R)) = \operatorname{RHom}_R(k, R) \otimes_{\mathscr{E}} k$$

is exactly what we wanted to compute earlier.

1.3.3. Let *i* be the inclusion of (the underlying topological space of) $Z = \operatorname{Spec} k = \operatorname{Spec} R/\mathfrak{m}$ into $\operatorname{Spec} R$. There is an adjoint pair

$$i_*: R \operatorname{-mod}_Z \xrightarrow{} R \operatorname{-mod}: i^!$$

where R-mod_Z denotes the category of R-modules set-theoretically supported on Z.

1.3.4. The "conceptual claim" is that there is an equivalence of categories R-mod_Z $\simeq \mathscr{E}^{\text{op}}$ -mod intertwining these adjunctions. Then,

$$\mathcal{L}(\mathcal{R}(R)) = i_*(i^!(R))$$

Consider the triangles

$$\begin{split} R &\to R[f_1^{-1}] \to R/(f_1^\infty) \\ R/(f_1^\infty) \to R/(f_1^\infty)[f_2^{-1}] \to R/(f_1^\infty, f_2^\infty) \end{split}$$

and so on, until

$$R/(f_1^{\infty},\ldots,f_{r-1}^{\infty}) \to R/(f_1^{\infty},\ldots,f_{r-1}^{\infty})[f_r^{-1}] \to R/(f_1^{\infty},\ldots,f_r^{\infty})$$

In each case, the middle term is supported off of Z, so $i^!$ of it is zero. Also, $R/(f_1^{\infty}, \ldots, f_r^{\infty})$ is supported on Z so that $i_* \circ i^!$ of it is itself. Applying $i_* \circ i^!$ to the triangles we obtain

$$\begin{split} i_*i^!R &\to 0 \to i_*i^!R/(f_1^\infty) \\ i_*i^!R/(f_1^\infty) &\to 0 \to i_*i^!R/(f_1^\infty, f_2^\infty) \end{split}$$

and so on, until

$$i_*i^!R/(f_1^\infty,\ldots,f_{r-1}^\infty) \to 0 \to R/(f_1^\infty,\ldots,f_r^\infty)$$

Tracing through, we obtain

$$i_*i^!R \simeq R/(f_1^\infty, \dots, f_r^\infty)[r]$$

1.3.5. We mention how to prove the conceptual claim: It suffices to prove that \mathcal{R} is essentially surjective, \mathcal{L} is fully faithful, and identify the essential image of \mathcal{L} with R-mod_Z. (Then, taking $\mathscr{E} \to k \in R$ -mod_Z specifies the equivalence. It intertwines i_* and \mathcal{L} , and the rest follows.)

Claim: The unit $\mathrm{id} \to \mathcal{R} \circ \mathcal{L}$ is an equivalence of functors. Certainly $\mathcal{R}(\mathcal{L}(\mathscr{E})) = \mathrm{RHom}_R(k, \mathscr{E} \otimes_{\mathscr{E}} k) = \mathscr{E}$, and we extend under colimits. This proves that \mathcal{R} is essentially surjective, and that \mathcal{L} is faithful.

Claim: If $M \in R$ -mod_Z, then the counit $\mathcal{L}(\mathcal{R}(M)) \to M$ is an equivalence. Certainly $\mathcal{L}(\mathcal{R}(k)) =$ RHom_R $(k,k) \overset{L}{\otimes}_{\mathscr{E}} k = \mathscr{E} \overset{L}{\otimes}_{\mathscr{E}} k = k$, and we extend under colimits. This proves that the essential image of \mathcal{L} contains R-mod_Z, and so is equal to it (since R-mod_Z is closed under colimits and contains k). Since \mathcal{R} is essentially surjective, this also proves that \mathcal{L} is full.

1.3.6. We didn't actually need the "conceptual claim" to run the "conceptual proof." All we needed was that

- Suppose $M \in R$ -mod is such that $f_i : M \to M$ is an equivalence for some *i*. Then, $\mathcal{R}(M) = 0$. This follows directly, using e.g. the Koszul complex.
- Suppose $M \in R$ -mod_Z. Then, $\mathcal{L}(\mathcal{R}(M)) = M$. This is the argument of the above claim.

Then, applying $\mathcal{L} \circ \mathcal{R}$ to the sequence of triangles yields the desired claim.