
JUVITOP: HOCHSCHILD HOMOLOGY

ANATOLY PREYGEL
SEPTEMBER 23, 2009

1. Today

1.1. How Today Fits In. The point of the seminar is to study

THH : {Assoc. alg in Spectra} −→ {Spectra}

Today we’ll talk about

HH : {Assoc. alg in Ch} −→ Ch

We’ll see that a few of the nicer statements will work best over Q. If we think that THH is the “right”
object then we might think this is due to the following phenomenon: If A is an algebra in ChZ, then1 H(A)
is an algebra in spectra but H(HH(A)) 6= THH(H(A)) in general. If, however, A is an algebra in ChQ, then
H(HH(A)) = THH(H(A))! So (algebraic) Hochschild homology is good enough to pick out the “rational”
part of THH. In effect, this is because the classical fact Q⊗Z Q = Q extends to the spectra-level statement
HQ ∧HQ = HQ.

Exercise 1.1.1. Verify HQ ∧ HQ = HQ, by, e.g., computing (stable) rational homology of rational
Eilenberg-MacLane spaces limm H•+m(K(Q, m), Q). Show that HZ ∧ HZ 6= HZ, by, e.g., exhibiting a
non-trivial element of limm H•+m(K(Z, m), Z) for • 6= 0.

1.2. Goals for Today. We have two main goals for today:

– “Examples”: Loop spaces; HKR and relation to differential theory.
– S1 action on HH(A): What it is; how it lets you define HC,HP,HC−; HP as De Rham cohomology;

trace map factors K → HC− → HH.

1.3. Reminders.

HH(A)
def
= A

L

⊗
A

L
⊗ZAop

A

As always this can be computed by the usual bar complex B(A, A ⊗ Aop, A). Can also compute this using
a “better” resolution of A as A⊗Aop-module, giving rise to the “cyclic bar complex”:

=
∣∣∣A //A⊗2oo

oo //
//A⊗3

oo
oo
oo

//
//
// · · ·oo

oo
oo

oo ∣∣∣

Here, Z/(n + 1)Z acts on the nth space of this simplicial set. It was an observation of Alain Connes that
the Hochschild differential is well-behaved with respect to this action and so one can fruitfully mix Hoschild
homology with group homology of the cyclic groups. This’ll give rise to the circle action!

1For a chain complex A, H(A) will denote the Eilenberg-MacLane spectrum↑
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2. “Examples”

We have the following table of computations. In the first column X is either a manifold (in which case HH

has to be computed using topological tensor products so that A⊗Aop = C∞(M2)) or a regular affine scheme
over Q. In the second example, M is a connected space (assumed simply connected for the A = C∗(M) case).

A = C∞(X), or A = Γ(X, OX) A = C∗(ΩM), resp., A = C∗(M)

HHk(A) Ωk
A Hk(LM), resp. H∗(LM)

S1-action De Rham differential Loop-rotation actions

HCk(A) ... HS1

k (LM),...

HPk(A)
∏

n Hk+2n
dR (X) HS1

k (LM)[u−1] ...

2.1. Hochschild-Kostant-Rosenberg – First Take. In this section A will be a regular commutative ring
over Q (or A = C∞(X) for a manifold, with the provision that X ⊗Xop is interpreted as C∞(X2)).

2.1.1. The geometric idea is to think of

HH(A) = A⊗A⊗Aop A

as a “derived self-intersection of the diagonal” and to resolve the diagonal using the identification of the
normal bundle of X ⊂ X2 and the tangent bundle of X .

2.1.2. As a warm-up, we do the cases of HH0(A), HH1(A) (this does not seem to need A to be regular!).
Indeed if we identify A⊗A with Γ(X2, O2

X) (or C∞(M2)), then A fits into a short exact sequence

0→ I = {Functions vanishing on the diagonal} → A⊗A −→ A→ 0

Those familiar with the algebraic framework will recall the definition

Ω1
A

def
= I ⊗A⊗A A = I/I2.

But the long exact sequence of Tor∗(−, A) includes the segment

Tor1(A⊗A, A) = 0→ Tor1(A, A)→ Tor0(I, A)→ Tor0(A⊗A, A)→ Tor0(A, A)→ 0

The map Tor0(I, A)→ Tor0(A⊗A, A) (i.e., I/I2 → A) is the zero map, so that we obtain

HH0(A) = (A⊗A)/I = A and HH1(A) = Tor1(A, A) = Tor0(I, A) = Ω1
A.

In general we need to do more work:

Proposition 2.1.3 (Hochschild-Kostant-Rosenberg). Suppose A is a regular commutative ring of charac-
teristic zero. Then,

HHi(A) = Ωi =

i∧
Ω1 = Module of Kahler i-forms

for all i ≥ 0.

Proof. If A is regular then A⊗A→ A is a “locally complete intersection” ring map. This corresponds to the
fact that X is smooth iff, locally near the diagonal X ⊂ X2, the diagonal looks like a regular intersection of
n = dimA sections of a vector bundle V . If this vector bundle were defined on all of X2, not just near X ,
then we could use its higher exterior powers (with a regular set of sections) to give a resolution (the “Koszul
resolution”) of A as A⊗A-module. The general case requires a bit more work.

We’ll indicate the proof in the special case A = k[x1, . . . , xn]. Set R = A⊗ A = k[x1, . . . , xn, y1, . . . , yn],
so that

I = (x1 − y1, · · · , xn − yn)R ⊂ R and the vector bundle is the trivial bundle V =
⊕

eiR

The resolution we will want is

n∧
V → · · · →

2∧
V →

1∧
V →

0∧
V = R ։ A
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Let’s work out the first few bits: The surjection V ։ I = ker(R→ A) is given by ei 7→ xi − yi. What is the
kernel of this surjection? One can check that it’s generated by elements of the form (xi− yi)ej − (xj − yj)ei,

which we will regard as the image of ei ∧ ej ∈
∧2

V . More generally, we can define a differential by

d(ei0 ∧ · · · ∧ eik
) =

∑
(−1)j(xij

− yij
) · · · ∧ êij

∧ · · ·

and prove that this gives a resolution of A = R/I as R-module. �

2.2. Loop Spaces.

2.2.1. Nick will talk about this in more detail on October 28th (in babytop, but in the usual juvitop time). In
the meantime, I can say something vague about how this is consistent with the previous example: Thinking
of C∗(ΩX) as an algebraic manifestation of the homotopy type of X (think of ΩX as equivalent to the path
groupoid of X), one might guess that “the derived self-intersection of the diagonal X ⊂ X2” would relate

to the homotopy fiber product X
h
×X2 X .

2.2.2. What precisely is this homotopy pullback? It can be explicitly realized as the space of paths γ :
I → X2 starting and ending on the diagonal. This is the same as pairs of paths γ1, γ2 : I → X satisfying
γ1(0) = γ2(0) and γ1(1) = γ2(1). But this is nothing but the space of loops in X , so that

X
h
×X2 X = LX and HH(C∗(ΩX))

Claim
= C∗(X

h
×X2 X) = C∗(LX).

3. Circle Actions

3.1. Complexes with S1-action. For this talk we’ll need a baby version of “Borel S1-equivariant (HZ-
)spectra”, which we can define by hand in the context of dg-algebra:

Definition 3.1.1. Let Ch be the category of chain complexes of abelian groups: we use homological grading,
i.e., differentials are of degree −1.
Define the category of “complexes with S1-action” S1-Ch to be the category of dg-modules over the graded
algebra C∗(S

1) ≃ H∗(S
1) = Z[ǫ]/(ǫ2), deg ǫ = 1. Explicitly, this is just a triple (V•, d, ǫ) consisting of a chain

complex (V•, d) together with a degree +1 chain map ǫ : V• → V•[1]. For this reason, these are sometimes
called mixed complexes.

Construction 3.1.2. Suppose V = (V•, d, ǫ) ∈ S1-Ch. We have the “point with trivial action” Z =
C∗(pt) ∈ S1-Ch. We can define complexes

VhS1 = V
L

⊗H∗(S1) Z

V hS1

= RHomH∗(S1)(Z, V )

These are modules over

ZhS1

= RHomC∗(S1)(Z, Z) =
∏

∗

C−∗(BS1) ≃ Z[[u]], deg u = −2

and we may also look at the resulting 2-periodic version

V Tate = V hS1

[u−1] = lim
←−

{
V hS1 u

←− V hS1 u
←− V hS1 u

←− · · ·
}

There are natural maps V hS1

→ V → VhS1 , and a Gysin-type map ǫ : VhS1 [−1] → V hS1

which classifies a

distinguished triangle V hS1

→ V Tate → VhS1 [−2].

3.1.3. More explicitly we have a reasonable resolution of Z as H∗(S
1)-module: It consists of H∗(S

1) = Z[ǫ]/ǫ2

in each degree, with all maps multiplication by ǫ. This gives rise to double complexes, whose totalizations
(“limit” or “colimit” version, as appropriate) give explicit models

VhS1 = (V [u−1]; d + uǫ with truncation in ǫ-direction)

=




⊕

n≤0

V [2n]; d internal to V , ǫ shifting between copies (except where truncated)




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V hS1

= (V [[u]]; d + uǫ) =




∏

n≥0

V [2n]; d internal to V , ǫ shifting between copies





V Tate = (V ((u)); d + uǫ) =

(
∏

n∈Z

V [2n]; d internal to V , ǫ shifting between copies

)

We’ve picked suggestive notation so that the Z[[u]]-module structure is visible.

Remark 3.1.4. Suppose (for the sake of drawing things) that V lives in non-negative degrees. Then, the
pictures to have in mind are (boxed entry is the (0, 0)-bigraded piece):

V hS1

= Tot
Q




�� �� ��
V4

d
��

ǫoo V3
ǫoo

d
��

V2

d
��

ǫoo

V3

d
��

ǫoo V2

d
��

ǫoo V1

d ��

ǫoo

V2

d
��

ǫoo V1

d
��

ǫoo V0
ǫoo

V1

d
��

ǫoo V0
ǫoo

V0
ǫoo




and VhS1 [−2] = Tot⊕




�� �� �� ��
V3

d
��

V2

d
��

ǫoo V1
ǫoo

d
��

V0
ǫoo

V2

d
��

V1

d
��

ǫoo V0
ǫoo

V1

d
��

V0
ǫoo

V0




V Tate = Tot
Q




�� �� �� �� �� ��
V5

d
��

ǫoo V4
ǫoo

d
��

V3

d
��

ǫoo V2

d
��

ǫoo V1

d
��

ǫoo V0
ǫoo

V4

d
��

ǫoo V3

d
��

ǫoo V2

d
��

ǫoo V1

d
��

ǫoo V0
ǫoo

V3

d
��

ǫoo V2

d
��

ǫoo V1

d ��

ǫoo V0
ǫoo

V2

d
��

ǫoo V1

d
��

ǫoo V0
ǫoo

V1
ǫoo

d
��

V0
ǫoo

V0
ǫoo




So, VhS1 consists of copies of V shifted in the “positive” direction (up and to the right), and with the ǫ

differential truncated to the left. Meanwhile, V hS1

consits of copies of V shifted in the “negative” direction
(down and to the left) and the differentials don’t have to be truncated. And, V Tate consists of shifts in both

directions (and with our choice of shift for VhS1), containing a copy of V hS1

and mapping to VhS1 .

Lemma 3.1.5 (Gysin Sequence). The above description of VhS1 immediately gives rise to a Gysin exact
triangle V → VhS1 → VhS1 [−2], where the first map is an inclusion and the second map is the quotient.
Passing to homotopy (i.e., homology of complexes) gives rise to a Gysin exact sequence

· · · → πnV → πnVhS1 → πn−2VhS1 → πn−1V → · · ·

Remark 3.1.6. If X is a space with an S1-action, then we can equip V = C∗(X) with the structure of object
in S1-Ch. Then, VhS1 = C∗(XhS1) and the natural spectral sequence Hp(BS1, Hq(X)) ⇒ Hp+q(XhS1) is

4



Juvitop: Hochschild Homology Anatoly Preygel

visible from the “obvious” (t-)filtration on VhS1 . Making these identifications, the above Lemma recovers
the usual Gysin sequence for X → XhS1 .

Remark 3.1.7. The name “Tate” in this context originally comes from the case of a finite cyclic group.
The group homology and cohomology glue together into a 2-periodic cohomology theory: Tate cohomology.
Consider the special case, of the above remark, X = S1 with S1 acting by the nth power map. Then
XhS1 = BZ/n, where Z/n ⊂ S1 is the n-torsion subgroup.

S1 //BZ/n = (S1)hS1

��
BS1

Then, VhS1 = C∗(BZ/n) is a complex computing group homology of Z/n, V hS1

=
∏

∗ C−∗(BZ/n) is
(ignoring

∏
∗ vs.

⊕
∗) a complex computing group cohomology, and V Tate is (ignoring

∏
∗ vs

⊕
∗) a complex

computing what is called “Tate cohomology.”

3.2. Cyclic Structure on HH. We can write down a concrete model for HH(A) as complex with S1-action.
For better or worse, I’d rather not just write down a formula. The derived tensor product description of
HH(A) looks like it might admit a Z/2-action, but not much more than that. The cleanest way to explain
the S1-action is via a specific model for Borel S1-equivariant spaces called cyclic sets.

3.2.1. We give a brief overview of a few different reasonable notions of (the homotopy theory of) spaces
with S1-action:

– The strict sense: S1 ×X → X satisfying the axioms for a group action. (Our definition of complex
with S1-action above is analogous to this.)

– The standard weak sense: Spaces over BS1. Given X with an honest S1-action, XhS1 → BS1 is the
resulting space over BS1. Conversely, given a space Y → BS1, the action of ΩBS1 on the homotopy
fiber may be transfered to S1.

– Our new sense (to be defined below): A cyclic set is roughly a simplicial set X• with actions of
Z/(n+1) on Xn for all n, suitably compatible. The claim is that the notion of a cyclic set X• ∈ cSet

gives another model for this. (The cyclic bar complex that Nick wrote down last time is, appropriately
enough, a cyclic object in chain complexes.)

More precisely, we have the following Proposition (proved in a 1985 paper of Dwyer-Hopkins-Kan):

Proposition 3.2.2. There is an adjoint pair

| · | : cSet
//
S1-Spaces : SingΛ•

oo

and a natural model structure on cSet for which this is a Quillen equivalence with the Borel model structure
on S1-spaces. These are also equivalent, via homotopy fixed points and taking fibers, to sSet/BS1.

Definition 3.2.3. Define the cyclic category with obΛop = N≥0 and

HomΛop([n], [m]) =
{
Homotopy classes of degree 1 increasing maps φ : S1 → S1 s.t. φ(µn+1) ⊂ µm+1

}

Define the category of cyclic sets
cSet = Fun(Λop,Set)

Remark 3.2.4. Note that

– Λop contains the simplicial category ∆op (as φ s.t., φ(1) = 1). In particular, we have a restriction
functor cSet→ sSet.

– HomΛop([n], [n]) = Z/(n + 1) by rotation;
– And, every morphism of Λop is uniquely a composite of a morphism in ∆op and a rotation. So,

we may regard a cyclic set as a simplicial set together with a Z/(n + 1)-action on the nth space,
interacting in a certain specific way with the simplicial structure.

– Somewhat unexpectedly from this presentation, there is an equivalence Λop ≃ Λ. In particular, Λop

contains another copy of ∆op (more than one due to automorphisms–but nevermind that)!
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Construction 3.2.5. Suppose A is a (unital) dga with differential ∂. Then, the natural cyclic object we
want is given by (using “bar” notation for the tensor)

[n] 7−→ A⊗(n+1)

{φ : [n]→ [m]} 7−→




A⊗(n+1) ∋ (a0|a1| · · · |an) 7→




∏

i∈φ−1(0)

ai

∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣

∏

i∈φ−1(m)

ai



 ∈ A⊗(m+1)






The associated complex with S1-action is the geometric realization (=Tot⊕) of a simplicial set we get from
one of the “extra” copies of ∆op. Explicitly: (my signs might be wrong in the graded case!)

HH(A) =




⊕

n≥0

A⊗(n+1)[−n], d, B





d (a0|a1| · · · |an)︸ ︷︷ ︸
deg=n+

P

i deg ai

=

d1=Simplicial differential︷ ︸︸ ︷
n−1∑

i=0

(−1)εi (· · · |ai−1|aiai+1|ai+1| · · · ) + (−1)(deg an+1)(εn−1+1) (ana0|a1|..|an−1)

+

n∑

i=0

(−1)εi−1 (· · · |ai−1|∂ai|ai+1| · · · )

︸ ︷︷ ︸
d0=Internal differential of A

where εi = i + 1 + deg a0 + · · · + deg ai (i ≥ 0), ε−1 = 0. The S1-action (“ǫ”) is provided by the Connes
B-operator

B(a0| · · · |an) =
n∑

i=0

(−1)ǫi−1(ǫk−ǫi−1) ((1|a1| · · · |an|a0| · · · |ai−1)− (ai| · · · |an|a0| · · · |ai−1|1))

3.2.6. One application of this machinery is the following: Attached to a topological group G is a natural
set Γ•G, defined by formulas “suspiciously similar” to the above, and which has the property that |Γ•G| ≃
L(BG). Applying this to G = ΩX , we recover LX . This can lead to a proof of HH(C∗(ΩX)) = C∗(LX),
and compatibility with the cyclic structure shows compatibility of circle actions.

Definition 3.2.7. Define

The cyclic homology complex HC
def
= HH(A)hS1

The negative cyclic homology complex HC− def
= HH(A)hS1

The periodic cyclic homology complex HP
def
= HH(A)Tate

Proposition 3.2.8 (Morita Invariance). The trace maps tr : Mr(A)⊗n+1 → A⊗n+1 induce an equivalence
HH(Mr(A)) ≃ HH(A) as complexes with S1-action, and so induces equivalences on HC,HC−,HP. More
generally, one can define HH(C), as complex with S1-action up to weak equivalence, for dg-categories and
show a strong form of Morita invariance.

Construction 3.2.9. The nth space of the cyclic set underlying HH(C) is

[n] 7−→
⊕

Xn,...,X0∈C

HomC(Xn, Xn−1)⊗ · · · ⊗HomC(X1, X0)⊗HomC(X0, X1)

and the structure maps come from composition. Then, the formula immediately shows HH(A) = HH(C)
for C the full subcategory of A-mod corresponding to the object A: This is just the category with one object
and Aop as automorphisms. The strong form of Morita invariance allows one to pass to thick closures (e.g.,
taking of finite direct sums and direct summands).

Remark 3.2.10. We can see Morita Invariance of HC (at the level of just homotopy groups) from e.g., a
suitable application of the Gysin Sequence (Lemma 3.1.5) and Morita Invariance for HH.
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3.2.11. A heuristic diagram of relevant maps (and how things fit together):

Carries S1-action

Hochschild︷ ︸︸ ︷
(HH(A))︸ ︷︷ ︸

lives over Z[[u]]/(u) = Z

←−

Receives Chern character

negative cyclic︷ ︸︸ ︷
HC−(A)︸ ︷︷ ︸

lives over Z[[u]]

−→

Analog of De Rham Cohomology

periodic cyclic︷ ︸︸ ︷
HP(A)︸ ︷︷ ︸

lives over Z((u))

−→

cyclic︷ ︸︸ ︷
HC(A)

Remark 3.2.12. There is another, more direct from a homological algebra point of view, way of getting a
double-complex for HC(A). The idea is to mix, by hand, the standard resolution computing group homology
of Z/(n + 1) with two complexes (one of them (HH(A), d), the other contractible) related to A⊗(n+1):

d
�� ��

d
�� ��

A⊗3

d

��

A⊗3

s

FF

��

1−σ
oo A⊗3

d

��

N
oo A⊗3

s

FF

��

1−σ
oo

N
oo

A⊗2

d

��

A⊗2

s

II

��

1−σ
oo A⊗2

d

��

N
oo A⊗2

s

II

��

1−σ
oo

N
oo

A A
1−σ

oo

s

HH

A
N

oo A
1−σ

oo

s

HH

N
oo

The even columns are the Hochschild complex with its d differential, but the odd columns admit a contracting
homotopy s. Removing them and passing to “Adams-style” indexing (or is it back from?) gives the “familiar”
complex for HC(A). In terms of this, B = (1− σ)sN .

This complex rise to a spectral sequence with E1-page Hp−q(BZ/(q + 1), A⊗q+1) ⇒ πp+qHC(A). In

characteristic zero, the only non-zero terms are for p = q and H0(BZ/(q + 1), A⊗q+1) = A⊗q+1
Z/(q+1). In other

words, the Hochschild differential d factors through the quotient and (in char. 0) the resulting quotient
complex computes π∗HC(A).

Exercise 3.2.13. Extend this complex in the obvious way to the left, to obtain an analogue of the complex

for HP. Suppose we work over Q. Explain why taking Tot⊕ instead of Tot
Q

would be a bad idea. (Hint:
What does each row compute?)

3.3. Chern Character.

3.3.1. The Dennis trace map, which Nick began describing last time, gives the top row of

Kn(A) = πnB GL(A)+
Dennis trace //

��

HHn(A) = πnHH(A)

Hn(B GL(A)) = π∗C∗(B GL(A)) //_________ HC−
n (A) = π∗HC−(A)

OO

We might expect it to come from a map of spectra, in which case since HH(A) is an HZ-spectrum it
would factor through the Hurewicz map in the left column. In the right column we have the natural map

HC−(A) = (HH(A))hS1

→ HH(A).

Theorem 3.3.2. The Dennis trace map does in fact factor through a map Hn(B GL(A))→ HC−
n (A).

4. HKR Revisited

Filling out the analogies having to do with the “differential picture” (i.e., the first column):

Name Symbol Analogy
Hochschild chains HH(A) Kahler modules
Connes’ Differential S1 action B on HH(A) De Rham differential
Periodic cyclic chains HP(A) (Z/2-graded) De Rham cohomology
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4.1. De Rham differential, Connes differential.

Proposition 4.1.1. The Connes B operator induces a map B : HHk(A) → HHk+1(A) which, under the
HKR identification of Prop. 2.1.3, is (up to sign) the De Rham differential.

4.2. Periodic cyclic Homology and the non-smooth case. We noticed in the “table of analogies” that
(homotopy groups of) HP(A) only saw the De Rham cohomology and did not let any part of the underlying
De Rham complex seep out. This is crucial, because it allows the following to be true:

Theorem 4.2.1. Suppose A is a commutative algebra (say finite-type over C, but not necessarily regular).
Then,

HPk(A) ≃
∏

n

Hk+2n
sing ((Spec A)(C), C)

so that periodic cyclic homology recovers the “true” Z/2-periodic cohomology.
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